Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
BMC Vet Res ; 20(1): 206, 2024 May 17.
Article in English | MEDLINE | ID: mdl-38760770

ABSTRACT

BACKGROUND: In livestock, identifying the physiological and reproductive stages is valuable in guiding management decisions related to nutrition, veterinary procedures, and breeding programs. To achieve this goal, a cohort of Barki ewes in this research underwent observation across three pivotal physiological conditions: pre-pregnancy, late pregnancy, and early lactation. Blood samples were collected to investigate the changes in serum metabolic profile as well as gene expression pattern of cytokines and antioxidants markers during these stages. RESULTS: Our results showed that during late pregnancy, there was a significant (P < 0.05) increase in red blood cells (11.9 ± 0.5 1012/L), hemoglobin (10.8 ± 0.4 g/dl) and neutrophils count (7 ± 0.1 109/L) with significant decrease (P < 0.05) of total white blood cell count (9.1 ± 0.05 109/L). The packed cell volume (%) and monocyte count showed a significant (P < 0.05) decrease during both late pregnancy and early lactation stages. The serum concentrations of glucose, cholesterol, GSH, GPx, SOD and catalase displayed significant (P < 0.05) decrease during late pregnancy and early-lactation. Notably, during late pregnancy, there was a significant (P < 0.05) increase in the serum concentrations of albumin, globulin, urea, IGF-1, and malondialdehyde with significant decrease (P < 0.05) of total protein (4.9 ± 0.08 g/dl). Additionally, during early lactation, there was a significant (P < 0.05) increase in the serum levels of non-esterified fatty acids, triiodothyronine (T3), and thyroxin (T4). The gene expression profiles of cytokines (IL-4, IL-6, IL-8, and NFKB) were decreased in the ewes during late pregnancy compared to pre-pregnant and early lactation stages. In addition, the expression profile of antioxidant genes (SOD, CAT, GPX, and Nrf2) was significantly upsurged in the non-pregnant ewes compared to late pregnancy and early lactation ones. CONCLUSIONS: The results concluded that different physiological status significantly affects the blood metabolic profile and gene expression pattern in Barki sheep. Our findings can be helpful in monitoring animal health and applying in breeding programs of Barki sheep under harsh environmental conditions.


Subject(s)
Antioxidants , Cytokines , Animals , Female , Cytokines/genetics , Cytokines/blood , Cytokines/metabolism , Antioxidants/metabolism , Pregnancy , Sheep/metabolism , Lactation , Biomarkers/blood , Metabolome
SELECTION OF CITATIONS
SEARCH DETAIL
...