Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Sci Rep ; 13(1): 18512, 2023 10 28.
Article in English | MEDLINE | ID: mdl-37898682

ABSTRACT

During COVID-19 pandemic, Favipiravir (FPV) showed a great efficacy against COVID-19 virus, it produced noticeable improvements in recovery of the patients. The aim of this study was to develop a new, green and simple method for the simultaneous determination of FPV and its acid-induced degradation product (ADP) in its pure and pharmaceutical dosage forms. This method will be key for the inevitable development of FPV solution and inhaler formulations. A green micellar RP-HPLC method was developed using an RP-VDSPHERE PUR 100 column (5 µm, 250 × 4.6 mm) and an isocratic mixed micellar mobile phase composed of 0.02 M Brij-35, 0.1 M SDS and 0.01 M potassium dihydrogen orthophosphate anhydrous and adjusted to pH 3.0 with 1.0 mL min-1 flow rate. The detection was performed at 280 nm with a run time of less than six min. Under the optimized chromatographic conditions, linear relationship has been established between peak area and concentration of FPV and its ADP in the range of 5-100 and 10-100 µg mL-1 with elution time of 3.8 and 5.7 min, respectively. The developed method was validated according to the ICH guidelines and applied successfully for determination of FPV in its pharmaceutical dosage form.


Subject(s)
Pandemics , Humans , Solvents , Chromatography, High Pressure Liquid/methods , Pharmaceutical Preparations
2.
BMC Chem ; 17(1): 129, 2023 Sep 30.
Article in English | MEDLINE | ID: mdl-37777796

ABSTRACT

Favipiravir (FAV) has been approved as an antiviral drug used in pandemic corona virus to treat covid-19. It has an amide moiety susceptible to hydrolysis and degradation in acid medium. Therefore, four simple, sensitive, and accurate stability indicating spectrophotometric methods have been developed for the determination of FAV in presence of its acid induced degradation product. The first method describes direct determination of FAV at 323 nm. Dual wavelength method was the second developed one for FAV quantitation by recording the absorbance difference at 322.7 and 270 nm. The third method involves using first derivative peak to peak amplitude at 338.0 and 308.0 nm, while difference spectrophotometry was the fourth suggested method, and it was based on recording the spectral changes at 361.3 nm as pH changes. The obtained calibration curves were linear over 4.0-22.0 µg/mL. Accuracy of the suggested procedures ranged from 99.11 to100.06, while precision results were from 0.80 to1.68. The developed methods were used to determine FAV in pure powdered form, laboratory-prepared mixtures with their degradation product, and pharmaceutical formulation without interference from its acidic degradation product.The greenness was assessed based on GAPI and ACREE metric and was found to be compatible and in reconciliation with green analytical chemistry concepts.

3.
BMC Chem ; 17(1): 109, 2023 Aug 31.
Article in English | MEDLINE | ID: mdl-37653428

ABSTRACT

BACKGROUND: Favipiravir is currently used for the treatment of coronavirus disease-2019 (COVID-19). OBJECTIVE: A highly sensitive and eco-friendly electroanalytical method was developed to quantify favipiravir. METHOD: The voltammetric method optimized a sensor composed of reduced graphene oxide / modified carbon paste electrode in the presence of an anionic surfactant, improving the favipiravir detection limit. The investigation reveals that favipiravir-oxidation is a diffusion-controlled irreversible process. The effects of various pH and scan rates on oxidation anodic peak current were investigated. RESULTS: The developed method offers a wide linear dynamic range of 1.5-420 ng/mL alongside a higher sensitivity with a limit of detection in the nanogram range (0.44 ng/mL) and a limit of quantification in the low nanogram range (1.34 ng/mL). CONCLUSION: The proposed method was applied for the determination of favipiravir in the dosage form, human plasma and urine samples. The developed method exhibited good selectivity in the presence of two potential electroactive biological interferants, uric acid which increases during favipiravir therapy and the recommended co-administered vitamin C. The organic solvent-free method greenness was evaluated via the Green Analytical Procedure Index, The present work offers a simple, sensitive and environment-friendly method fulfilling green chemistry concepts.

4.
J AOAC Int ; 106(1): 26-33, 2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36214622

ABSTRACT

BACKGROUND: Safinamide, a highly specific inhibitor of monoamine oxidase B, is a new approved prodigious therapy used to cure Parkinson's disease (PD). OBJECTIVE: Before marketing and selling a medicine, manufacturers must guarantee that the manufacturing process is consistent by monitoring levels of process-related chemicals and drug contaminants. Therefore, five precise, fast, and accurate spectrophotometric techniques were employed and evaluated for the simultaneous measurement of safinamide and its synthetic precursor, 4-hydroxybenzaldehyde. METHODS: The first derivative, derivative ratio, ratio difference, dual wavelength, and Fourier self-deconvolution methods worked well to resolve spectral overlap of safinamide and its synthetic precursor, 4-hydroxybenzaldehyde. RESULTS: Safinamide detection limits ranged from 0.598 to 1.315 µg/mL, whereas the 4-hydroxybenzaldehyde detection limit was found to be as low as 0.327 µg/mL. CONCLUSION: According to International Council for Harmonisation (ICH) criteria, all procedures were verified and confirmed to be accurate, robust, repeatable, and precise within reasonable range. No considerable variation was found when comparing the outcomes of the suggested approaches to the findings of previously published methods. The ecological value of established methods was measured: the national environmental methods index (NEMI), the analytical eco-scale, the analytical greenness metric (AGREE), and the green analytical process index (GAPI) were used. HIGHLIGHTS: This is the first spectrophotometric determination of safinamide drug in the presence of its synthetic precursor. Five simple and efficient spectrophotometric approaches were employed to determine a newly approved antiparkinsonian drug in the presence of its synthetic precursor simultaneously. Ecological appraisal was performed for the developed methods using four assessment tools.


Subject(s)
Antiparkinson Agents , Parkinson Disease , Humans , Antiparkinson Agents/pharmacology , Antiparkinson Agents/therapeutic use , Parkinson Disease/drug therapy , Benzylamines/pharmacology , Benzylamines/therapeutic use , Alanine/pharmacology , Alanine/therapeutic use
5.
BMC Chem ; 16(1): 72, 2022 Sep 27.
Article in English | MEDLINE | ID: mdl-36167604

ABSTRACT

Pharmaceutical quality control products (QC) demand quick, sensitive, and cost-effective methods to ensure high production at a low cost. Green analytical methods are also becoming more common in pharmaceutical research to cut down on the amount of waste that goes into the environment. Meclizine hydrochloride (MZH) and pyridoxine hydrochloride (PYH) are reported to be excellent for calming down COVID-19. As a result, the amount of MZH and PYH manufactured by multinational pharmaceutical organizations has increased considerably during the last several months. The present work proposes three environmentally friendly, straightforward, and sensitive spectrophotometric procedures for quantification of MZH in the presence of PYH in a pure and marketable formulations. The approaches under examination include ratio subtraction (RSM), induced dual wavelength (IDW), and Fourier self-deconvolution (FSD). PYH, on the other hand, was directly quantified at 290 nm. For both drugs, the procedures follow Beer's law in the range of (5-50 µg/mL). The RSM, IDW, and FSD methods, as well as the zero-order approach for PYH, have all been verified in accordance with ICH standards. The ecological value of established methodologies was determined using four distinct ways: the national environmental methods index (NEMI), the analytical Eco-scale, the Analytical Greenness Metric (AGREE), and the green analytical process index (GAPI). Comparing the findings to those of the previously described spectrophotometric technique, no major changes were identified.

6.
BMC Chem ; 16(1): 70, 2022 Sep 20.
Article in English | MEDLINE | ID: mdl-36127740

ABSTRACT

A new rapid, simple, and sensitive RP-HPLC method was carried out through applying Quality by Design approach for determination of xipamide and valsartan in Human plasma. Fractional factorial design was used for screening of four independent factors: pH, flow rate, detection wavelength, and % of MeOH. Analysis of variance (ANOVA) confirmed that flow rate and % of MeOH were only significant. Chromatographic conditions optimization was carried out through using central composite design. Method analysis was performed using BDS Hypersil C8 column (250 × 4.6 mm, 5 µm) and an isocratic mobile phase of MeOH and 0.05 M KH2PO4 buffer pH 3 (64.5:35.5, v/v) at 1.2 mL/min flow rate with UV detection at 240 nm and 10 µL injection volume. According to FDA guidelines, the method was then validated for the determination of the two drugs clinically in human plasma in respect of future pharmacokinetic and bioequivalence simulation studies. The standard curve was linear in the concentration range of 5-100 µg/mL for both drugs, with a determination coefficient (R2) of 0.999. Also, the average recoveries lied within the range from 99.89 to 100.03%. The proposed method showed good predictability and robustness.

7.
Molecules ; 26(5)2021 Mar 06.
Article in English | MEDLINE | ID: mdl-33800848

ABSTRACT

Despite its proven efficacy in diverse metabolic disorders, quercetin (QU) for clinical use is still limited because of its low bioavailability. D-α-Tocopherol polyethylene glycol 1000 succinate (TPGS) is approved as a safe pharmaceutical adjuvant with marked antioxidant and anti-inflammatory activities. In the current study, several QU-loaded self-nanoemulsifying drug delivery systems (SNEDDS) were investigated to improve QU bioavailability. A reversed phase high performance liquid chromatography (RP-HPLC) method was developed, for the first time, as a simple and sensitive technique for pharmacokinetic studies of QU in the presence of TPGS SNEDDS formula in rat plasma. The analyses were performed on a Xterra C18 column (4.6 × 100 mm, 5 µm) and UV detection at 280 nm. The analytes were separated by a gradient system of methanol and phosphate buffer of pH 3. The developed RP-HPLC method showed low limit of detection (LODs) of 7.65 and 22.09 ng/mL and LOQs of 23.19 and 66.96 ng/mL for QU and TPGS, respectively, which allowed their determination in real rat plasma samples. The method was linear over a wide range, (30-10,000) and (100-10,000) ng/mL for QU and TPGS, respectively. The selected SNEDDS formula, containing 50% w/w TPGS, 30% polyethylene glycol 200 (PEG 200), and 20% w/w pumpkin seed oil (PSO), showed a globule size of 320 nm and -28.6 mV zeta potential. Results of the pharmacokinetic studies showed 149.8% improvement in bioavailability of QU in SNEDDS relative to its suspension. The developed HPLC method proved to be simple and sensitive for QU and TPGS simultaneous determination in rat plasma after oral administration of the new SNEDDS formula.


Subject(s)
Adjuvants, Pharmaceutic/chemistry , Drug Compounding , Nanoparticles/administration & dosage , Polyethylene Glycols/chemistry , Quercetin/blood , Succinates/chemistry , alpha-Tocopherol/chemistry , Animals , Antioxidants/administration & dosage , Antioxidants/chemistry , Antioxidants/pharmacokinetics , Chromatography, High Pressure Liquid , Drug Delivery Systems , Male , Nanoparticles/chemistry , Quercetin/administration & dosage , Quercetin/chemistry , Quercetin/pharmacokinetics , Rats , Rats, Wistar , Surface-Active Agents , Tissue Distribution
8.
J AOAC Int ; 104(3): 847-853, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33528014

ABSTRACT

BACKGROUND: Entecavir (ENT) is an antiretroviral agent prescribed for the treatment of the hepatitis B virus(HBV) and human immunodeficiency virus(HIV). OBJECTIVE: Development and validation of three simple, sensitive, selective, and precise methods for determination of ENT in the presence of its oxidative degradation product (ENT deg.). METHOD: The first method was based on second derivative (D2) spectrophotometry through measuring the peak amplitude of D2 spectra at 293.6 nm. The second one is mean centering of the ratio spectra (MCR), which enabled measurement of the peak amplitude at 280.0 nm. The third method was HPLC, where ENT was separated from ENT deg. using a Zobrax C18 column and methanol:water (30:70, v/v) with pH 3 as a mobile phase. The three developed methods were validated according to the International Conference on Harmonization guidelines. RESULTS: Linearity range of ENT was 5.00-50.00 µg/mL for both D2 and MCR. However, higher sensitivity was achieved using HPLC (1.00-50.00 µg/mL). Accuracy of ENT were 100.60 ± 0.547%, 101.55 ± 1.2071%, and 100.61 ± 1.207% for D2, MCR, and HPLC methods, respectively, and precision was within 1.280. CONCLUSIONS: The developed methods were successfully applied for the determination of ENT in Tecavir® tablets without interference from ENT deg. They showed no significant difference in comparison with the official method and they can be applied in the quality analysis of ENT with high selectivity, accuracy, and precision. HIGHLIGHTS: ENT was quantified using two spectrophotometric (D2 and MCR) methods and an HPLC method in presence of ENT deg. The proposed methods were applied to analysis of ENT tablets with high selectivity, sensitivity, and accuracy.


Subject(s)
Oxidative Stress , Chromatography, High Pressure Liquid , Guanine/analogs & derivatives , Humans , Spectrophotometry , Tablets
9.
Data Brief ; 24: 103877, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30993157

ABSTRACT

The data presented are related to the article entitled "Six Sigma quality approach for HPLC-UV method optimization" Ibrahim et al., 2019. The raw data of HPLC analysis of ascorbic acid (AS), paracetamol (PA) and guaifenesin (GU) are presented. Calibration standards were prepared at six concentrations levels (25%, 50%, 75%, 100%, 125% and 150%) each day and measured in triplicate. Validation standards were prepared at four concentration levels (25%, 60%, 100% and 150%) each day and measured in quintet. Three different series were used for method validation and prepared at the rate of one series per day.

10.
Spectrochim Acta A Mol Biomol Spectrosc ; 202: 401-409, 2018 Sep 05.
Article in English | MEDLINE | ID: mdl-29807338

ABSTRACT

Charge-transfer complex (CTC) formation between tioconazole (TCZ) as an n-electron donor and 7, 7, 8, 8-tetracyanoquinodimethane (TCNQ) as a π-acceptor was studied spectrophotometrically with an accompanying kinetic and thermodynamic investigation. Multivariate data analysis via a set of experimental designs was executed for this purpose. A 23 - two-level full factorial design (FFD) was used for inspecting the proposed variables while a face-centered central composite design (FCCCD) was used to adjust the levels of variables proved to be significant. Two responses were quantified as a result of this interaction; complex I (Y1, measured at 743 nm) and complex II (Y2, measured at 842 nm). Derringer's function and overlaid contour plots were used to concurrently optimize both responses. Benesi-Hildebrand equation was applied to determine of formation constant (K), and the molar absorptivity (Ɛ) of the formed complex. Different thermodynamic parameters; the standard Gibbs free energy change (∆G°), the standard enthalpy of formation (∆H°) and the standard entropy change (∆S°) were determined for the reaction product. The proposed method was validated regarding the linearity, intra-, and inter-day precision and accuracy, limit of detection, limit of quantification and following the ICH standards. The proposed method was also applied for the determination of TCZ in its pharmaceutical preparations. Having a higher molar absorptivity and higher formation constant, complex II was of choice for all subsequent measurements. Application of Benesi-Hildebrand equation supported the formation of 1: 1 CTC. Thermodynamic study revealed the endothermic characters and the spontaneity of formation of the CTC at high temperature.


Subject(s)
Imidazoles/chemistry , Nitriles/chemistry , Kinetics , Limit of Detection , Multivariate Analysis , Thermodynamics , Time Factors
11.
Article in English | MEDLINE | ID: mdl-17035079

ABSTRACT

Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acyclovir and acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drugs with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320nm or the fluorescence intensity of the produced cerous(III) ion at 361-363nm (excitation at 250nm). Beer's law obeyed from 2 to 8, 0.25 to 2.5microgcm-1 acyclovir, 1 to 7 and 0.25 to 2.5microgml-1 acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed method were successfully applied for determination of the selected drugs in their pharmaceutical preparations with good recoveries.


Subject(s)
Acebutolol/analysis , Acyclovir/analysis , Cerium/chemistry , Sulfates/chemistry , Spectrometry, Fluorescence/methods
12.
Spectrochim Acta A Mol Biomol Spectrosc ; 65(3-4): 997-9, 2006 Nov.
Article in English | MEDLINE | ID: mdl-16914365

ABSTRACT

Simple and sensitive spectrophotometric and spectrofluorimetric methods are described for analysis of acebutolol hydrochloride. The proposed methods are based on oxidation of the selected drug with cerium(IV) ion in acidic medium with subsequent measurement of either the decrease in absorbance at 320 nm or the fluorescence intensity of the produced cerous(III) ion at 363 nm (excitation at 250 nm). Beer's law obeyed from 1.0-7.0 microg ml(-1) and 0.25-2.5 microg ml(-1) acebutolol hydrochloride, using the spectrophotometric and spectrofluorimetric method, respectively. The proposed methods were successfully applied for determination of the selected drug in its pharmaceutical preparation with good recoveries.


Subject(s)
Acebutolol/analysis , Acyclovir/analysis , Adrenergic beta-Antagonists/analysis , Antiviral Agents/analysis , Fluorophotometry/methods , Spectrometry, Fluorescence/methods
13.
Spectrochim Acta A Mol Biomol Spectrosc ; 65(5): 1087-92, 2006 Dec.
Article in English | MEDLINE | ID: mdl-16716651

ABSTRACT

Sensitive spectrophotometric and spectrofluorimetric methods are described for the determination of tramadol, acebutolol and dothiepin (dosulepin) hydrochlorides. The two methods are based on the condensation of the cited drugs with the mixed anhydrides of malonic and acetic acids at 60 degrees C for 25-40 min. The coloured condensation products are suitable for the spectrophotometric and spectrofluorimetric determination at 329-333 and 431-434 nm (excitation at 389 nm), respectively. For the spectrophotometric method, Beer's law was obeyed from 0.5 to 2.5 microg ml(-1) for tramadol, dothiepin and 5-25 microg ml(-1) for acebutolol. Using the spectrofluorimetric method linearity ranged from 0.25 to 1.25 microg ml(-1) for tramadol, dothiepin and 1-5 microg ml(-1) for acebutolol. Mean percentage recoveries for the spectrophotometric method were 99.68+/-1.00, 99.95+/-1.11 and 99.72+/-1.01 for tramadol, acebutolol and dothiepin, respectively and for the spectrofluorimetric method, recoveries were 99.5+/-0.844, 100.32+/-0.969 and 99.82+/-1.15 for the three drugs, respectively. The optimum experimental parameters for the reaction has been studied. The validity of the described procedures was assessed. Statistical analysis of the results has been carried out revealing high accuracy and good precision. The proposed methods were successfully applied for the determination of the selected drugs in their pharmaceutical preparations with good recoveries. The procedures were accurate, simple and suitable for quality control application.


Subject(s)
Acebutolol/analysis , Dothiepin/analysis , Pharmaceutical Preparations/chemistry , Tramadol/analysis , Spectrometry, Fluorescence/methods , Spectrophotometry/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...