Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Poult Sci ; 103(3): 103404, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38242053

ABSTRACT

The cytokine storm induced by duck hepatitis A virus type 1 (DHAV-1) infection significantly contributes to severe, rapid deaths and economic losses in the duck industry in Egypt. This study aimed to investigate the potential inhibitory effect of a nanoemulsion containing turmeric and black pepper oil on the immune response and pathogenesis of DHAV-1 in ducklings. A total of 105 ducklings from nonvaccinated breeders were divided into 5 experimental groups, each comprising 21 birds. The negative control group (G1) remained noninfected with DHAV-1 and nontreated with nanoemulsion, while the positive control group (G2) was infected with DHAV-1 but not treated with nanoemulsion. The other 2 groups (G3, the supplemented group which was noninfected with DHAV-1), and group 4 (the prophylactic group G4) which was infected with DHAV-1, both received nanoemulsion throughout the experiment. Group 5 (G5, the therapeutic group), on the other hand, which was infected with DHAV-1 received nanoemulsion only from the onset of clinical signs. At 5 days old, the ducklings in the positive control (G2), the prophylactic (G4), and the therapeutic group (G5) were infected with DHAV-1. All the ducklings in the infected groups exhibited depression, anorexia, and opisthotonos, and their livers displayed various degrees of ecchymotic hemorrhage, liver enlargement, and microscopic pathological lesions. Notably, the positive control group (G2) experienced the most severe and pronounced effects compared to the other infected groups treated with the nanoemulsion. Meanwhile, the viral RNA loads were lower in the liver tissues of the infected ducklings treated with the nanoemulsion (G4, and G5) compared to the positive control group G2. Additionally, the nanoemulsion effectively modulated proinflammatory cytokine expression, antioxidant enzymes, liver enzymes, and lipid profile of treated ducklings. In conclusion, the turmeric and black pepper oil nanoemulsion has the potential to be a therapeutic agent for regulating and modulating the immune response, decreasing DHAV-1-induced cytokine storms, and minimizing mortality and economic losses in the duck business. More research is needed to understand how turmeric and black pepper oil nanoemulsion alleviates DHVA-1-induced cytokine storms and lowers duckling mortality.


Subject(s)
Cytokine Release Syndrome , Hepatitis Virus, Duck , Piper nigrum , Plant Oils , Animals , Cytokine Release Syndrome/veterinary , Curcuma , Ducks , Chickens
2.
Vet World ; 16(3): 607-617, 2023 Mar.
Article in English | MEDLINE | ID: mdl-37041824

ABSTRACT

Background and Aim: Biosecurity implementation is fundamental to combating diseases and antibiotic resistance. Therefore, this study aimed to examine the correlation between the implementation of biosecurity measures in small-scale duck farms and the incidence of infectious diseases that threaten the duck industry. Materials and Methods: Twenty small-scale duck farms of different breeds and production stages were collected as representative samples, focused on two districts in the Qalyoubia governorate, which possesses high-density small-scale farms. A 30-point structured questionnaire was designed to assess the level of biosecurity measures implemented in the sampled farms. These farms were examined for bacterial infection by cultivation, typing, and antibiotic sensitivity tests, in addition to molecular techniques for detecting suspected viral diseases. Results: The results showed that the farms had high or low levels of biosecurity; only 25% possessed high-level biosecurity. Bacteria, including Salmonella, Escherichia coli, Staphylococcus, and Pasteurella, were isolated from all sampled farms. High rates of antimicrobial resistance-reaching up to 100% were observed against some drugs. However, viral causative agents, including HPAI-H5N8, duck viral hepatitis, and goose parvovirus, were isolated from only five farms. Conclusion: The lack of commitment to biosecurity implementation, particularly personal hygiene, was observed in most sampled farms. Increasing the level of biosecurity reduced the incidence of mixed infections.

3.
Vet World ; 14(5): 1342-1353, 2021 May.
Article in English | MEDLINE | ID: mdl-34220140

ABSTRACT

BACKGROUND AND AIM: The Marek's disease virus (MDV) is a neoplastic disease causing serious economic losses in poultry production. This study aimed to investigate MDV occurrence in poultry flocks in the Lower Egypt during the 2020 breakout and genetically characterized Meq, gL, and ICP4 genes in field strains of MDV. MATERIALS AND METHODS: Forty samples were collected from different breeds from eight Egyptian governorates in 2020. All flocks had received a bivalent vaccine (herpesvirus of turkey FC-126 + Rispens CVI988). However, weight loss, emaciation, reduced egg production, paralysis, and rough/raised feather follicles occurred. Samples were collected from feather follicles, liver, spleen, and nerve tissue for diagnosis by polymerase chain reaction. MDV genetic characterization was then performed by sequencing the Meq, gL, and ICP4 genes of five positive samples representing different governorates and breeds. RESULTS: A total of 28 samples were positive for MDV field strains, while two were related to MDV vaccinal strains. All samples tested negative for ALV (A, B, C, D, and J) and REV. Phylogenetic analysis of the Meq gene of sequenced samples revealed that all MDVs were related to the highly virulent European viruses (Gallid herpesvirus 2 ATE and PC12/30) with high amino acid (A.A.) identity 99.2-100%. Alternatively, there was low A.A. identity with the vaccine strains CVI988 and 3004 (up to 82.5%). These results indicate that further investigation of the efficacy of current Egyptian vaccines is required. The Egyptian strains also harbor a specific mutation, allowing clustering into two subgroups (A and B). By mutation analysis of the Meq gene, the Egyptian viruses in our study had R101K, P217A, and E263D mutations present in all Egyptian viruses. Furthermore, R176A and T180A mutations specific to our strains contributed to the high virulence of highly virulent strains. There were no mutations of the gL or ICP4 genes. CONCLUSION: Further studies should evaluate the protection contributed by current vaccines used in Egypt.

4.
Vet World ; 13(6): 1065-1072, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32801556

ABSTRACT

AIM: This study aimed to determine the prevalence of layer flock tumor disease in Lower Egypt during the period of 2018-2019 and to undertake molecular characterization and determine the genetic diversity of all identified viruses. MATERIALS AND METHODS: Forty samples were collected from layer chicken located in six governorates of Lower Egypt during the period of 2018-2019. Samples were taken from tumors in different organs. Tumor tissues were identified by histopathological sectioning and then further confirmed by a reverse-transcription polymerase chain reaction. Finally, genetic evolution of Avian leukosis virus (ALV-J) gp85 gene was studied. RESULTS: All the study samples were negative for Marek's disease virus, reticuloendotheliosis virus, ALV (A,B,C and D) and 20 samples were positive for ALV-J in backyard in six governrates. Sequencing of ALV-J gp85 gene was performed for six representative samples (one from each governorate), and they were found to be genetically related to prototype virus HPRS-1003 (identity percentage: 91.2-91.8%), but they were from a different group that was similar to the AF88-USA strain (first detected in 2000) with specific mutations, and they differed from a strain that was previously isolated in Egypt in 2005, forming two different subgroups (I and II) that had mutations in the hr1domain (V128F, R136A) and hr2 domain (S197G, E202K). CONCLUSION: The ALV-J virus was the main cause of neoplastic disease in layer chickens from Lower Egypt in the period of 2018-2019. We found that the genetic evolution of ALV-J gp85 gene was related to prototype virus HPRS-1003 but in a different group with a specific mutation. Further studies are needed to evaluate the antigenicity and pathogenicity of recently detected ALV-J strains.

SELECTION OF CITATIONS
SEARCH DETAIL
...