Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 87
Filter
1.
Avicenna J Phytomed ; 14(4): 455-469, 2024.
Article in English | MEDLINE | ID: mdl-38952773

ABSTRACT

Objective: This study assessed the cardioprotective properties of Persicaria maculosa (PME) and Citrus sinensis (CME) hydro-methanolic extracts, besides Citrus sinensis aqueous extract (CWE) against doxorubicin (DOX)-induced cardiotoxicity. Materials and Methods: The extracts were characterized. Mice were divided into eight groups: control (saline), DOX, protected (injected with 200 mg/kg of PME, CWE or CME for 21 days, orally, and DOX), and extracts (PME, CWE or CME administration, orally, for 21 days). DOX was injected (5 mg/kg, ip) on days 8, 13 and 18 of the experiment. Cardiac tumor necrosis factor-alpha (TNF-α), nuclear factor (erythroid-derived 2)-like 2 (Nrf2) and carbonyl reductase 1 (CBR1) expression levels, besides superoxide dismutase, catalase, malondialdehyde, nitric oxide and total protein levels were evaluated. Serum lactate dehydrogenase, creatine phosphokinase cardiac isoenzyme, aspartate transaminase, cholesterol, triglycerides and creatinine levels, as well as the cardiac tissues were examined. Results: Comparing with the control, DOX considerably (p<0.01) up-regulated TNF-α expression, malondialdehyde, nitric oxide, cardiac enzymes, lipids and creatinine levels, while it significantly (p<0.01) down-regulated Nrf2 and CBR1. Additionally, DOX interfered with antioxidant enzymes' activities (p<0.01). Conversely, protected groups showed a significant (p<0.01) amelioration of DOX-induced cardiotoxic effects. Conclusion: The current study provides a new understanding of P. maculosa and C. sinensis cardioprotective mechanisms. The extracts' cardioprotective effects may be due to their antioxidant activities, ability to maintain the redox homeostasis through regulation of important antioxidant genes and primary antioxidant enzymes, and capability to recover inflammatory cytokines and lipids levels. Noteworthy, the tested extracts showed no toxic changes on the normal mice.

2.
Biol Proced Online ; 26(1): 16, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831428

ABSTRACT

BACKGROUND: It is necessary to develop advanced therapies utilizing natural ingredients with anti-inflammatory qualities in order to lessen the negative effects of chemotherapeutics. RESULTS: The bioactive N1-(5-methyl-5H-indolo[2,3-b]quinolin-11-yl)benzene-1,4-diamine hydrochloride (NIQBD) was synthesized. After that, soluble starch nanoparticles (StNPs) was used as a carrier for the synthesized NIQBD with different concentrations (50 mg, 100 mg, and 200 mg). The obtained StNPs loaded with different concentrations of NIQBD were coded as StNPs-1, StNPs-2, and StNPs-3. It was observed that, StNPs-1, StNPs-2, and StNPs-3 exhibited an average size of 246, 300, and 328 nm, respectively. Additionally, they also formed with homogeneity particles as depicted from polydispersity index values (PDI). The PDI values of StNPs-1, StNPs-2, and StNPs-3 are 0.298, 0.177, and 0.262, respectively. In vivo investigation of the potential properties of the different concentrations of StNPs loaded with NIQBD against MTX-induced inflammation in the lung and liver showed a statistically substantial increase in levels of reduced glutathione (GSH) accompanied by a significant decrease in levels of oxidants such as malondialdehyde (MDA), nitric oxide (NO), advanced oxidation protein product (AOPP), matrix metalloproteinase 9/Gelatinase B (MMP-9), and levels of inflammatory mediators including interleukin 1-beta (IL-1ß), nuclear factor kappa-B (NF-κB) in both lung and liver tissues, and a significant decrease in levels of plasma homocysteine (Hcy) compared to the MTX-induced inflammation group. The highly significant results were obtained by treatment with a concentration of 200 mg/mL. Histopathological examination supported these results, where treatment showed minimal inflammatory infiltration and congestion in lung tissue, a mildly congested central vein, and mild activation of Kupffer cells in liver tissues. CONCLUSION: Combining the treatment of MTX with natural antioxidant supplements may help reducing the associated oxidation and inflammation.

3.
Chemosphere ; 359: 142362, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38768786

ABSTRACT

Quantitative Structure Activity Relation (QSAR) models are mathematical techniques used to link structural characteristics with biological activities, thus considered a useful tool in drug discovery, hazard evaluation, and identifying potentially lethal molecules. The QSAR regulations are determined by the Organization for Economic Cooperation and Development (OECD). QSAR models are helpful in discovering new drugs and chemicals to treat severe diseases. In order to improve the QSAR model's predictive power for biological activities of naturally occurring indoloquinoline derivatives against different cancer cell lines, a modified machine learning (ML) technique is presented in this paper. The Arithmetic Optimization Algorithm (AOA) operators are used in the suggested model to enhance the performance of the Sinh Cosh Optimizer (SCHO). Moreover, this improvement functions as a feature selection method that eliminates superfluous descriptors. An actual dataset gathered from previously published research is utilized to evaluate the performance of the suggested model. Moreover, a comparison is made between the outcomes of the suggested model and other established methodologies. In terms of pIC50 values for different indoloquinoline derivatives against human MV4-11 (leukemia), human HCT116 (colon cancer), and human A549 (lung cancer) cell lines, the suggested model achieves root mean square error (RMSE) of 0.6822, 0.6787, 0.4411, and 0.4477, respectively. The biological application of indoloquinoline derivatives as possible anticancer medicines is predicted with a high degree of accuracy by the suggested model, as evidenced by these findings.


Subject(s)
Algorithms , Quantitative Structure-Activity Relationship , Quinolines , Humans , Quinolines/chemistry , Quinolines/pharmacology , Cell Line, Tumor , Machine Learning , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Indoles/chemistry , Indoles/pharmacology
4.
Sci Rep ; 14(1): 11395, 2024 May 18.
Article in English | MEDLINE | ID: mdl-38762558

ABSTRACT

In order to protect the copper against corrosion, a novel corrosion inhibitor known as diphenyl ((2-aminoethyl) amino) (4-methoxyphenyl) methyl) phosphonate (DAMP) was developed. Acid solutions of HCl and H2SO4 were the aggressive solutions employed in this study. Analysis using the FT-IR, 1H-NMR, 31P-NMR, 13C-NMR and BET confirmed that the DAMP was successfully synthesized. The anti-corrosion capabilities of DAMP are evaluated using a combination of chemical, electrochemical and quantum studies. The DAMP has been found to be crucial in preventing the corrosion of copper in both HCl and H2SO4 acid. This was obviously implied by the observation that the corrosion rate of copper in acid solutions decreased when DAMP was added. It is significant to note that 180 ppm produced the highest levels of inhibiting efficiency (96.6% for HCl and 95.2% for H2SO4). The tendency of DAMP to adsorb on the surface of copper through its hetero-atoms (O, N, and P) is the main factor for the anti-corrosion capabilities of DAMP. Results from SEM/EDX tests supported this. The actual adsorption takes place via various active centers, physical and chemical mechanisms that are coordinated with the estimated quantum parameters. Additionally, the adsorption of DAMP adheres to the Langmuir isotherm.

5.
J Orthod Sci ; 13: 7, 2024.
Article in English | MEDLINE | ID: mdl-38516108

ABSTRACT

BACKGROUND: Demineralization of the enamel surface, which appears as white spot lesions during and after removal of the fixed orthodontic appliance, is the most common disadvantage of the orthodontic treatment course. Using the remineralizing agents during and after orthodontic treatment helps to avoid those enamel defects. OBJECTIVE: The present study aims to assess the remineralizing effect of the chicken eggshell powder on the demineralized enamel surfaces after debonding the orthodontic bracket system. MATERIALS AND METHODS: The current study was performed on 80 prepared premolar crowns embedded into acrylic molds. The samples were prepared to receive routine steps of the bonding process for the bracket system. The paste of the chicken eggshell powder was added to the samples after the debonding process. Scanning electron microscopy (SEM) and energy-dispersive X-ray (EDX) were used to evaluate the remineralization effect of the chicken eggshell powder. Also, the Vickers microhardness tester was used to assess the enamel surface microhardness. RESULTS: It was found that the mean value of the Ca/P ratio for the samples before bonding of the orthodontic bracket system was (4.17 ± 2.2). This value significantly decreased to (2 ± 1.3) after debonding of the orthodontic bracket system and then showed a significant increase to (4.79 ± 2.65) after remineralization. These results were assured by the values of the Vickers microhardness tester. CONCLUSION: The chicken eggshell powder has an excellent remineralization effect for the demineralized enamel surface after debonding the orthodontic enamel surface.

6.
Anticancer Agents Med Chem ; 24(6): 436-442, 2024.
Article in English | MEDLINE | ID: mdl-38305388

ABSTRACT

BACKGROUND: The efficacy of chemotherapy continues to be limited due to associated toxicity and chemoresistance. Thus, synthesizing and investigating novel agents for cancer treatment that could potentially eliminate such limitations is imperative. OBJECTIVE: The current study aims to explore the anticancer potency of cryptolepine (CPE) analog on Ehrlich ascites carcinoma cells (EACs) in mice. METHODS: The effect of a CPE analog on EAC cell viability and ascites volume, as well as malonaldehyde, total antioxidant capacity, and catalase, were estimated. The concentration of caspase-8 and mTOR in EACs was also measured, and the expression levels of PTEN and Akt were determined. RESULTS: Results revealed that CPE analog exerts a cytotoxic effect on EAC cell viability and reduces the ascites volume. Moreover, this analog induces oxidative stress in EACs by increasing the level of malonaldehyde and decreasing the level of total antioxidant capacity and catalase activity. It also induces apoptosis by elevating the concentration of caspase-8 in EACs. Furthermore, it decreases the concentration of mTOR in EACs. Moreover, it upregulates the expression of PTEN and downregulates the expression of Akt in EACs. CONCLUSION: Our findings showed the anticancer activity of CPE analog against EACs in mice mediated by regulation of the PTEN/Akt/mTOR signaling pathway.


Subject(s)
Antineoplastic Agents , Carcinoma, Ehrlich Tumor , Cell Proliferation , Drug Screening Assays, Antitumor , Oxidative Stress , PTEN Phosphohydrolase , Proto-Oncogene Proteins c-akt , Quinolines , Signal Transduction , TOR Serine-Threonine Kinases , Animals , PTEN Phosphohydrolase/metabolism , TOR Serine-Threonine Kinases/metabolism , Mice , Oxidative Stress/drug effects , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/pathology , Carcinoma, Ehrlich Tumor/metabolism , Antineoplastic Agents/pharmacology , Antineoplastic Agents/chemistry , Antineoplastic Agents/chemical synthesis , Proto-Oncogene Proteins c-akt/metabolism , Signal Transduction/drug effects , Cell Proliferation/drug effects , Quinolines/pharmacology , Quinolines/chemistry , Quinolines/chemical synthesis , Structure-Activity Relationship , Dose-Response Relationship, Drug , Molecular Structure , Cell Survival/drug effects , Apoptosis/drug effects , Indole Alkaloids
7.
J Hazard Mater ; 465: 133203, 2024 03 05.
Article in English | MEDLINE | ID: mdl-38103294

ABSTRACT

Antibacterial compounds that reduce extracellular polymeric substances (EPS) are needed to avoid bacterial biofilms in water pipelines. Herein, green one-pot synthesis of α-aminophosphonates (α-Amps) [A-G] was achieved by using ionic liquid (IL) as a Lewis acid catalyst. The synthesized α-Amp analogues were tested against different bacteria such as Bacillus subtilis, Escherichia coli, and Pseudomonas aeruginosa. The representative [B] analogue showed an efficient antibacterial effect with MIC values of 3.13 µg/mL for E. coli, P. aeruginosa, and 6.25 µg/mL for B. subtilis. Additionally, a strong ability to eliminate the mature bacterial biofilm, with super-MIC values of 12.5 µg/mL for E. coli, P. aeruginosa, and 25 µg/mL for B. subtilis. Moreover, bacterial cell disruption by ROS formation was also tested, and the compound [B] revealed the highest ROS level compared to other compounds and the control, and efficiently destroyed the extracellular polymeric substances (EPS). The docking study confirmed strong interactions between [B] analogue and protein structures with a binding affinity of -6.65 kCal/mol for the lyase protein of gram-positive bacteria and -6.46 kCal/mol for DNA gyrase of gram-negative bacteria. The results showed that α-Amps moiety is a promising candidate for developing novel antibacterial and anti-biofilm agents for clean water supply.


Subject(s)
Anti-Bacterial Agents , Escherichia coli , Anti-Bacterial Agents/chemistry , Molecular Docking Simulation , Reactive Oxygen Species , Bacteria , Biofilms , Microbial Sensitivity Tests
8.
Sci Rep ; 13(1): 22791, 2023 12 21.
Article in English | MEDLINE | ID: mdl-38123695

ABSTRACT

A series of new coumarin-N-heterocyclic hybrids, coumarin-quinolines 7a-e, coumarin-acridines 10b,c and coumarin-neocryptolepines 13b,c were synthesized and evaluated for their anticancer and antimicrobial activities. The structures of all synthesized hybrids were confirmed by FT-IR, 1H-NMR, 13C-NMR, and MS spectrometry. The anti-proliferative activity of hybrids 7a-e, 10c and 13c were bio-evaluated using MTT-assay against colon (CaCo-2), lung (A549), breast (MDA-MB-231), and hepatocellular carcinoma (HepG-2) human cancer cell lines using doxorubicin as a reference drug. The results demonstrated that, all hybrids displayed moderate to good anti-proliferative activity against the cell lines. The most active hybrids were 7a-d and 10c against CaCo-2 cancer cell line with IC50: 57.1, 52.78, 57.29, 51.95 and 56.74 µM, and selectivity index 1.38, 1.76, 2.6, 1.96 and 0.77; respectively. While, 7a,d were potent against A549 cancer cell line with IC50: 51.72, 54.8 µM and selectivity index 1.5, 0.67; respectively. Moreover, 7c showed the most potency against MDA-MB-231 cancer cell line with IC50: 50.96 µM and selectivity index 2.20. Interestingly, docking results revealed that binding energy of the current compounds showed marked affinity values ranging from -6.54 to -5.56 kcal with interactions with the reported key amino acid SER 79. Furthermore, the antimicrobial activity of the synthesized hybrids 7a-e, 10b,c, 13b and 13c were evaluated against Gram-positive and Gram-negative bacterial and fungal strains. The hybrids 10b, 13b, 10c, and 13c exhibited broad-spectrum antibacterial activity against E.coli, S. mutans, and S. aureus with MIC from 3.2 to 66 µM, this hybrids also displayed antifungal activity against C. albicans with MIC values ranging from 0.0011 to 29.5 µM. In-silico investigation of the pharmacokinetic properties indicated that tested hybrids had high GI absorption, low Blood Brain Barrier (BBB) permeability in addition to cell membrane penetrability.


Subject(s)
Antineoplastic Agents , Staphylococcus aureus , Humans , Molecular Structure , Structure-Activity Relationship , Caco-2 Cells , Spectroscopy, Fourier Transform Infrared , Antineoplastic Agents/chemistry , Anti-Bacterial Agents/chemistry , Coumarins/chemistry , Molecular Docking Simulation , Drug Screening Assays, Antitumor , Cell Proliferation
9.
Int J Mol Sci ; 24(18)2023 Sep 20.
Article in English | MEDLINE | ID: mdl-37762637

ABSTRACT

The current study evaluated the cytotoxic activity of 11-(1,4-bisaminopropylpiperazinyl)5-methyl-5H-indolo[2,3-b]quinoline (BAPPN), a novel derivative of 5-methyl-5H-indolo[2,3-b]quinoline, against hepatocellular carcinoma (HepG2), colon carcinoma (HCT-116), breast (MCF-7), and lung (A549) cancer cell lines and the possible molecular mechanism through which it exerts its cytotoxic activity. BAPPN was synthesized and characterized with FT-IR and NMR spectroscopy. The binding affinity scores of BAPPN for caspase-3 PDB: 7JL7 was -7.836, with an RMSD of 1.483° A. In silico screening of ADME properties indicated that BAPPN showed promising oral bioavailability records in addition to their high gastrointestinal absorption and blood-brain barrier penetrability. BAPPN induced cytotoxicity, with IC50 values of 3.3, 23, 3.1, and 9.96 µg/mL against cancer cells HepG2, HCT-116, MCF-7, and A549, respectively. In addition, it induced cell injury and morphological changes in ultracellular structure, including cellular delayed activity, vanishing of membrane blebbing, microvilli, cytoplasmic condensation, and shrunken nucleus with more condensed chromatin autophagosomes. Furthermore, BAPPN significantly increased the protein expression of caspase-3 and tumor suppressor protein (P53). However, it significantly reduced the secretion of vascular endothelial growth factor (VEGF) protein into the medium and decreased the protein expression of proliferation cellular nuclear antigen (PCNA) and Ki67 in HepG2, HCT-116, MCF-7, and A549 cells. This study indicates that BAPPN has cytotoxic action against liver, colon, breast, and lung cancer cell lines via the up-regulation of apoptotic proteins, caspase-3 and P53, and the downregulation of proliferative proteins, VEGF, PCNA, and Ki67.

10.
Molecules ; 28(13)2023 Jun 24.
Article in English | MEDLINE | ID: mdl-37446620

ABSTRACT

α-aminophosphonate (α-AP) is used as a novel corrosion inhibitor for carbon steel. The aggressive media applied in this study are HCl and H2SO4 acid solutions. The findings indicate that the morphology of the α-AP compound is cubic, with particles ranging in size from 17 to 23 µm. FT-IR, 1HNMR, 31PNMR, and 13CNMR analysis confirmed the synthesis of the α-AP molecule. It has been discovered that the compound α-AP plays an important role in inhibiting the corrosion of carbon steel in both HCl and H2SO4 acids. This was identifiably inferred from the fact that the addition of α-AP compound decreased the corrosion rate. It is important to report that the maximum inhibition efficiency (92.4% for HCl and 95.7% for H2SO4) was obtained at 180 ppm. The primary factor affecting the rate at which steel specimens corrode in acidic electrolytes is the tendency of α-AP compounds to adsorb on the surface of steel through their heteroatoms (O, N, and P). This was verified by SEM/EDX results. The adsorption actually occurs through physical and chemical mechanisms via different active centers which are matched with the calculated quantum parameters. In addition, the adsorption of α-AP follows the Langmuir isotherm.


Subject(s)
Carbon , Steel , Steel/chemistry , Corrosion , Carbon/chemistry , Spectroscopy, Fourier Transform Infrared , Acids
11.
J Mater Chem B ; 11(30): 7144-7159, 2023 08 02.
Article in English | MEDLINE | ID: mdl-37403540

ABSTRACT

Microbial infection is the most common obstacle in the wound healing process, leading to wound healing impairment and complications and ultimately increasing morbidity and mortality. Due to the rising number of pathogens evolving resistance to the existing antibiotics used for wound care, alternative approaches are urgently required. In this study, α-aminophosphonate derivatives as antimicrobial agents were synthesized and incorporated into self-crosslinked tri-component cryogels composed of fully hydrolyzed polyvinyl alcohol (PVA-F), partially hydrolyzed polyvinyl alcohol (PVA-P), and cellulose nanofibrils (CNFs). Initially, the antimicrobial activity of four α-aminophosphonate derivatives against selected skin bacterial species was tested and their minimum inhibitory concentration was determined based on which the most effective compound was loaded into the cryogels. Next, the physical and mechanical properties of cryogels with various blending ratios of PVA-P/PVA-F and fixed amounts of CNFs were assessed, and drug release profiles and biological activities of drug-loaded cryogels were analyzed. Assessment of α-aminophosphonate derivatives showed the highest efficacy of a cinnamaldehyde-based derivative (Cinnam) against both Gram-negative and Gram-positive bacteria compared to other derivatives. The physical and mechanical properties of cryogels showed that PVA-P/PVA-F with a 50/50 blending ratio had the highest swelling ratio (1600%), surface area (523 m2 g-1), and compression recoverability (72%) compared to that with other blending ratios. Finally, antimicrobial and biofilm development studies showed that the cryogel loaded with a Cinnam amount of 2 mg (relative to polymer weight) showed the most sustained drug release profile over 75 h and had the highest efficacy against Gram-negative and Gram-positive bacteria. In conclusion, self-crosslinked tri-component cryogels loaded with the synthesized α-aminophosphonate derivative, having both antimicrobial and anti-biofilm formation properties, can have a significant impact on the management of uprising wound infection.


Subject(s)
Anti-Infective Agents , Cryogels , Polyvinyl Alcohol , Cellulose , Bandages
12.
Clin Nutr ESPEN ; 55: 157-166, 2023 06.
Article in English | MEDLINE | ID: mdl-37202040

ABSTRACT

BACKGROUND: Breast cancer (BC) is the second most frequent cancer in women and the second most common cancer worldwide. Lifestyle factors, like body weight, physical activity and diet, may be accompanying with higher BC risk. AIM: The assessment of macronutrients dietary intake; protein, fat, carbohydrates and their components of amino, fatty acids, and central obesity/adiposity among pre- and postmenopausal Egyptian women with benign and malignant breast tumors. METHODS: The current case control study included 222 women: 85 control, 54 benign and 83 breast cancer patients. Clinical, anthropocentric and biomedical examinations were performed. Dietary history and health attitude were done. RESULTS: The anthropometric parameters including waist circumference (WC) and the body mass index (BMI) of the benign and the women with malignant breast lesions showed the highest values when compared to the control (35.45 ± 15.58 km2 and 101.24 ± 15.01 cm, 31.39 ± 6.77 km2 and 98.85 ± 13.53 cm and 27.51 ± 7.10 km2 and 84.33 ± 13.78 cm). The biochemical parameters revealed high concentration of the total cholesterol (TC) (192.83 ± 41.54 mg/dl), low density lipoprotein-cholesterol (LDL-C) (117.88 ± 35.18 mg/dl) and the median insulin level 13.8 (10.2-24.1) µu/ml in the malignant patients with high significant difference compared to the control. The malignant patients had the highest daily caloric intake (795.84 ± 519.95 K calories) proteins (65.39 ± 28.77 g), total fats (69.09 ± 32.15 g) and carbohydrates (196.70 ± 85.35 g), when compared to the control. Data also revealed the high daily consumption of the different types of the fatty acids with high linoleic/linoleinic ratio among the malignant group (14.284 ± 6.25). Branched chain amino acids (BGAAs), sulphur amino acids (SAAs), conditional amino acids (CAAs) and aromatic amino acids (AAAs) proved to be the highest in this group. Correlation coefficient between the risk factors revealed either positive or negative weak correlation except that between serum LDL-C concentration and the amino acids (isoleucine, valine cysteine, tryptophan and tyrosine) and negative association with the protective polyunsaturated fatty acids. CONCLUSION: Participants with breast cancer had the greatest levels of body fatness and unhealthy feeding habits relative to their high calorie, protein, carbohydrate, and fat intake.


Subject(s)
Breast Neoplasms , Obesity, Abdominal , Humans , Female , Obesity, Abdominal/complications , Adiposity , Dietary Fats , Cholesterol, LDL , Case-Control Studies , Postmenopause , Egypt , Obesity/complications , Fatty Acids , Nutrients , Eating , Carbohydrates , Amino Acids
13.
Cells ; 12(7)2023 03 27.
Article in English | MEDLINE | ID: mdl-37048097

ABSTRACT

The study evaluated the antitumor efficacy of APAN, "synthesized indoloquinoline analog derived from the parent neocryptolepine isolated from the roots of Cryptolepis sanguinolenta", versus the chemotherapeutic drug etoposide (ETO) in Ehrlich solid tumor (EST)-bearing female mice as well as its protective effect against etoposide-triggered hepatic disorders. APAN showed an ameliorative activity against Ehrlich solid tumor and hepatic toxicity, and the greatest improvement was found in the combined treatment of APAN with ETO. The results indicated that EST altered the levels of tumor markers (AFP, CEA, and anti-dsDNA) and liver biomarker function (ALT, AST, ALP, ALB, and T. protein). Furthermore, EST elevated CD68 and anti-survivin proteins immuno-expressions in the solid tumor and liver tissue. Molecular docking studies were demonstrated to investigate their affinity for both TNF-α and topoisomerase II as target proteins, as etoposide is based on the inhibition of topoisomerase II, and TNF-α is quite highly expressed in the solid tumor and liver tissues of EST-bearing animals, which prompted the authors' interest to explore APAN affinity to its binding site. Treatment of mice bearing EST with APAN and ETO nearly regularized serum levels of the altered parameters and ameliorated the impact of EST on the tissue structure of the liver better than that by treatment with each of them separately.


Subject(s)
Carcinoma, Ehrlich Tumor , Chemical and Drug Induced Liver Injury , Neoplasms , Mice , Female , Animals , Etoposide/pharmacology , Etoposide/therapeutic use , Cryptolepis , Tumor Necrosis Factor-alpha , Molecular Docking Simulation , Carcinoma, Ehrlich Tumor/drug therapy , Carcinoma, Ehrlich Tumor/metabolism , Carcinoma, Ehrlich Tumor/pathology , DNA Topoisomerases, Type II/therapeutic use
14.
Pharmaceutics ; 15(4)2023 Apr 10.
Article in English | MEDLINE | ID: mdl-37111685

ABSTRACT

This work describes the synthesis of quinoline-based N--heterocyclic arenes and their biological evaluation as molluscicides against adult Biomophalaria alexandrina snails as well as larvicides against Schistosoma mansoni larvae (miracidia and cercariae). Molecular docking studies were demonstrated to investigate their affinity for cysteine protease protein as an interesting target for antiparasitics. Compound AEAN showed the best docking results followed by APAN in comparison to the co-crystallized ligand D1R reflected by their binding affinities and RMSD values. The egg production, hatchability of B. alexandrina snails and ultrastructural topography of S. mansoni cercariae using SEM were assessed. Biological evaluations (hatchability and egg-laying capacity) revealed that the quinoline hydrochloride salt CAAQ was the most effective compound against adult B. alexandrina snails, whereas the indolo-quinoline derivative APAN had the most efficiency against miracidia, and the acridinyl derivative AEAA was the most effective against cercariae and caused 100% mortality. CAAQ and AEAA were found to modulate the biological responses of B. alexandrina snails with/without S. mansoni infection and larval stages that will affect S. mansoni infection. AEAA caused deleterious morphological effects on cercariae. CAAQ caused inhibition in the number of eggs/snail/week and reduced reproductive rate to 43.8% in all the experimental groups. CAAQ and AEAA can be recommended as an effective molluscicide of plant origin for the control program of schistosomiasis.

15.
Healthcare (Basel) ; 11(6)2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36981448

ABSTRACT

Piezoelectric surgical instruments with various mini-sized tips and cutting technology offer a precise and thin cutting line that could allow the wider use of periodontal osseous wall swaging. This randomized controlled trial was designed to investigate the use of a minimally invasive piezo knife to harvest vascularized interseptal bone pedicles in treating intra-bony defects. Sixteen non-smoking patients (mean age 39.6 ± 3.9) with severe chronic periodontitis were randomly assigned into one of two groups (N = 8). The Group 1 (control) patients were treated by bone substitute grafting of the intra-bony defect, whereas the Group 2 patients were treated by intra-bony defect osseous wall swaging (OWS) combined with xenograft filling of the space created by bone tilting. In both groups, the root surfaces were treated with a neutral 24% EDTA gel followed by saline irrigation. Clinical and radiographic measurements were obtained at baseline and 6 months after surgery. The sites treated with osseous wall swaging showed a statistically significant probing-depth reduction and increase in clinical attachment compared with those of the Group 1 patients. The defect base level was significantly reduced for the OWS group compared to that of the Group 1 control. By contrast, the crestal bone level was significantly higher in the OWS group compared to Group 1. The crestal interseptal bone width was significantly higher in Group 2 at 6 months compared to the baseline value and to that of Group 1 (<0.001). The osseous wall swaging effectively improved the clinical hard- and soft-tissue parameters. The use of mini inserts piezo-cutting, sequential bone expanders for osseous wall redirection, and root surface EDTA etching appears to be a reliable approach that could allow the use of OWS at any interproximal dimension.

16.
Int J Immunopathol Pharmacol ; 37: 3946320231154998, 2023.
Article in English | MEDLINE | ID: mdl-36740569

ABSTRACT

microRNA-146a (miR-146a) plays an essential role in immune anomalies and organ injury of systemic lupus erythematosus (SLE) by regulating the disease's inflammation and complications. Here, we analyzed the expression of miR-146a in SLE and a panel of pro-inflammatory cytokines (IL-1, IL-6, IL-8, IL-17, and TNF-α). Association between all measured parameters and the disease's clinical manifestation and response to treatment was monitored. Our study populations were 113 SLE patients and 104 healthy volunteers. miR-146a expression in peripheral blood mononuclear cells (PBMCs) was measured by quantitative real-time PCR (RT-qPCR). The content of the plasma cytokines (IL-1ß, IL-6, IL-8, IL-17, and TNF-α) was detected by enzyme-linked immunosorbent assay (ELISA). Compared with healthy controls, miR-146a expression was significantly increased (p < 0.05) in lupus patients. The analysis of the receiver operator characteristic curve (ROC) of miR-146a showed 91% sensitivity and 70% specificity. IL-1ß, IL-6, and IL-17 cytokines were significantly increased (p < 0.001), while IL-8 and TNF-α were significantly decreased (p < 0.001) in SLE patients against controls. The expression of miR-146a and TNF-α was upregulated considerably in SLE patients with severe disease activity. miR-146a expression was positively correlated with IL-6. Our results pointed to the elevation of miR-146a as a trade marker of SLE patients. Reduction of IL-8 and TNF-α in combination with an elevation of IL-1ß, IL-6, and IL-17 might refer to miR-146a's dual effect in controlling inflammation in lupus. Although we shed some light on the role of miR-146a in SLE, further study is recommended to improve our results.


Subject(s)
Lupus Erythematosus, Systemic , MicroRNAs , Humans , Cytokines/metabolism , Inflammation/metabolism , Interleukin-17/metabolism , Interleukin-6/metabolism , Interleukin-8/metabolism , Leukocytes, Mononuclear/metabolism , Lupus Erythematosus, Systemic/genetics , Lupus Erythematosus, Systemic/drug therapy , MicroRNAs/metabolism , Tumor Necrosis Factor-alpha/metabolism
17.
Apoptosis ; 28(3-4): 653-668, 2023 04.
Article in English | MEDLINE | ID: mdl-36719468

ABSTRACT

The current study evaluated the cytotoxic activity of 11(4-Aminophenylamino)neocryptolepine (APAN), a novel derivative of neocryptolepine, on hepatocellular (HepG2) and colon (HCT-116) carcinoma cell lines as well as, the possible molecular mechanism through which it exerts its cytotoxic activity. The APAN was synthesized and characterized based on their spectral analyses. Scanning for anticancer target of APAN by Swiss software indicated that APAN had highest affinity for protein tyrosine kinase 6 enzyme. Furthermore, Super pred software indicated that APAN can be indicated in hepatic and colorectal cells with 92%. Molecular docking studies indicated that the binding affinity scores of APAN for protein PDB code: 6CZ4 of tyrosine kinase 6 recorded of - 6.6084 and RMSD value of 0.8891°A, while that for protein PDB: 7JL7 of caspase 3 was - 6.1712 and RMSD of 0.8490°A. Treatment of HepG2 and HCT-116 cells with APAN induced cytotoxicity with IC50 of 2.6 and 1.82 µg/mL respectively. In addition, it induced injury and serious morphological changes in cells including, disappearance of microvilli, membrane blebbing, cytoplasmic condensation, and shrunken nucleus with more condensed chromatin. Moreover, APAN significantly increased protein expression of annexin V (apoptotic marker). Furthermore, APAN significantly increased protein expression of caspase 3 and P53. However, it significantly reduced secretion of VEGF protein into the medium and decreased protein expression of PCNA and Ki67 in HepG2 and HCT-116 cells. This study indicated that APAN had cytotoxic activity against HepG2 and HCT-116 cells via increasing the expression of apoptotic proteins and reducing the expression of proliferative proteins.


Subject(s)
Antineoplastic Agents , Carcinoma, Hepatocellular , Colorectal Neoplasms , Liver Neoplasms , Humans , Caspase 3/metabolism , Carcinoma, Hepatocellular/drug therapy , Molecular Docking Simulation , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Apoptosis , Antineoplastic Agents/therapeutic use , HCT116 Cells , Colorectal Neoplasms/drug therapy , Colorectal Neoplasms/genetics , Cell Proliferation
18.
Environ Sci Pollut Res Int ; 30(7): 17374-17383, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36192590

ABSTRACT

This study was designed to evaluate the protective potentials of chitosan nanoparticles (ChNPs) against silver nanoparticle (AgNP)-induced reproductive toxicity in male Wister albino rats. AgNPs, ChNPs, and AgNPs particles coated with ChNPs were characterized by using transmission electron microscope. Control rats were injected interperitoneally with 0.5% aqueous carboxymethyl cellulose. Second group was given ChNPs at a dose 300 mg/kg bwt. Third group was given AgNPs at a dose 50 mg/kg bwt. Fourth group was given AgNPs with chitosan nanoparticles simultaneously. Fifth group was given silver nanoparticles coated with chitosan nanoparticles at a dose 300 mg/kg bwt. TEM showed the formation of AgNPs with average size of 42.7 nm, ChNPs with average size of 33.3 nm, and AgNPs coated with ChNPs with average size of 48.1 nm. AgNPs significantly reduced serum levels of FSH, LH, testosterone and prolactin, sperm count, morphology index, vitality, total motility and progressive motility, the activities of catalase and superoxide dismutase, and the concentration of reduced glutathione in testicular tissues. However, it significantly increased malondialdehyde concentration in testicular tissues, sperm abnormalities, testicular tissue damages, non-progressive motility, and immotile sperms. On the contrast, ChNPs ameliorated AgNP-induced alteration in serum levels of sex hormones, spermogram, and testicular tissue's structure and functions. These results indicated that ChNPs had protective potential against AgNP-induced reproductive toxicity and ChNPs coating AgNPs had more potent protective effect than ChNPs administrated together with AgNPs.


Subject(s)
Chitosan , Metal Nanoparticles , Nanoparticles , Animals , Rats , Male , Metal Nanoparticles/toxicity , Metal Nanoparticles/chemistry , Chitosan/chemistry , Silver/toxicity , Silver/chemistry , Rats, Wistar , Semen , Nanoparticles/chemistry
19.
Egypt Liver J ; 12(1): 67, 2022.
Article in English | MEDLINE | ID: mdl-36466932

ABSTRACT

Background: Hepatitis C virus (HCV) may induce extrahepatic manifestations as acute or chronic renal dysfunction. The aim was to evaluate the diagnostic role of some biomarkers as cystatin C, cryoglobulins, rheumatoid factor (RF), and complement C3 for extrahepatic renal affection in newly diagnosed patients with HCV infection. Methods: Blood and urine were collected from randomized individuals screened for new HCV infection (n=400). The studied populations were divided into 3 groups: control group I: thirty healthy individuals not suffering from either liver or kidney diseases, group IIa: thirty HCV patients who have positive HCV antibody test but showed negative PCR test, and group IIb: thirty HCV patients who showed positive results for both HCV antibody and PCR tests. Results: In HCV group IIb, levels of serum total bilirubin, AST and ALT, and urine albumin/creatinine ratio were increased whereas serum albumin and creatinine clearance were decreased versus other groups. However, the levels of blood urea nitrogen and serum creatinine were still within the normal range in all groups. In HCV group IIb, cystatin C, cryoglobulins, and RF levels were increased; meanwhile, serum creatinine/cystatin C ratio and complement 3 levels were decreased compared to the other groups. HCV-infected patients significantly had higher serum cystatin C (>1.24 mg/L, P<0.001) and lower creatinine/cystatin C ratio (<70.1µMol/mg, P=0.002), and cystatin C was significantly correlated with liver and kidney parameters. Conclusion: High serum cystatin C and low creatinine/cystatin C ratio may be early indicators of mild renal dysfunction with normal serum levels of creatinine in HCV-infected individuals.

20.
Molecules ; 27(21)2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36364427

ABSTRACT

A series of novel neocryptolepine-rhodanine hybrids (9a,b, 11a-d, 14, and 16a,b) have been synthesized by combining neocryptolepine core 5 modified at the C-11 position with rhodanine condensed with the appropriate aryl/hetero aryl aldehydes. Based on these findings, the structures of the hybrids were confirmed by spectral analyses. By employing the MTT assay, all hybrids were tested for their in vitro antiproliferative activity against two cancer cell lines, including MDA-MB-231 (human breast) and HepG-2 (hepatocellular carcinoma). Interestingly, the IC50 values of all hybrids except 9b and 11c showed activity comparable to the standard anticancer drug, 5-fluorouracil, against HepG-2 cancer cells. Furthermore, the cytotoxicity of all the synthesized hybrids was investigated on a normal skin human cell line (BJ-1), and the results showed that these compounds had no significant cytotoxicity toward these healthy cells at the highest concentration used in this study. This study also indicated that the active hybrids exert their cytotoxic activity via the induction of apoptosis. A molecular docking study was used to shed light on the molecular mechanism of their anticancer activity. The docking results revealed that the hybrids exert their mode of action through DNA intercalation. Furthermore, in silico assessment for pharmacokinetic properties was performed on the most potent compounds, which revealed candidates with good bioavailability, high tolerability with cell membranes, and positive drug-likeness values.


Subject(s)
Antineoplastic Agents , Rhodanine , Humans , Drug Screening Assays, Antitumor , Rhodanine/pharmacology , Molecular Docking Simulation , Cell Line, Tumor , Structure-Activity Relationship , Cell Proliferation , Antineoplastic Agents/chemistry , Molecular Structure , Drug Design
SELECTION OF CITATIONS
SEARCH DETAIL
...