Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10973, 2024 05 14.
Article in English | MEDLINE | ID: mdl-38744889

ABSTRACT

In this study, we synthesized new series of 5-oxo-2-phenyl-4-(arylsulfamoyl)sulphenyl) hydrazono)-4,5-dihydro-1H-pyrrole-3-carboxylate hybrids 4a-f with the goal of overcoming sulfonamide resistance and identifying novel therapeutic candidates by chemical changes. The chemical structures of the synthesized hybrids were established over the spectroscopic tools. The frontier molecular orbitals configuration and energetic possessions of the synthesized compounds were discovered utilizing DFT/B3LYP/6-311++ G** procedure. The 3D plots of both HOMO and LUMO showed comparable configuration of both HOMO and LUMO led to close values of their energies. Amongst the prepared analogues, the sulfonamide hybrids 4a-f, hybrid 4a presented potent inhibitory towards S. typhimurium with (IZD = 15 mm, MIC = 19.24 µg/mL) and significant inhibition with (IZD = 19 mm, MIC = 11.31 µg/mL) against E.coli in contrast to sulfonamide (Sulfamethoxazole) reference Whereas, hybrid 4d demonstrated potent inhibition with (IZD = 16 mm, MIC = 19.24 µg/mL) against S. typhimurium with enhanced inhibition against E. Coli, Additionally, the generated sulfonamide analogues'' molecular docking was estimated over (PDB: 3TZF and 6CLV) proteins. Analogue 4e had the highest documented binding score as soon as linked to the other analogues. The docking consequences were fitting and addressed with the antibacterial valuation.


Subject(s)
Anti-Bacterial Agents , Microbial Sensitivity Tests , Molecular Docking Simulation , Pyrroles , Sulfonamides , Sulfonamides/chemistry , Sulfonamides/pharmacology , Sulfonamides/chemical synthesis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/chemical synthesis , Pyrroles/chemistry , Pyrroles/pharmacology , Pyrroles/chemical synthesis , Salmonella typhimurium/drug effects , Escherichia coli/drug effects , Models, Molecular , Structure-Activity Relationship , Molecular Structure
SELECTION OF CITATIONS
SEARCH DETAIL
...