Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 3846-3849, 2021 11.
Article in English | MEDLINE | ID: mdl-34892073

ABSTRACT

Coronary artery extraction in cardiac CT angiography (CCTA) image volume is a necessary step for any quantitative assessment of stenoses and atherosclerotic plaque. In this work, we propose a fully automated workflow that depends on convolutional networks to extract the centerlines of the coronary arteries from CCTA image volumes, starting from identifying the ostium points and then tracking the vessel till its end based on its radius and direction. First, a regression U-Net is employed to identify the ostium points in the image volume, then these points are fed to an orientation and radius predictor CNN model to track and extract each artery till its end point. Our results show that an average of 96% of the ostium points were identified and located within less than 5mm from their true location. The coronary arteries centerlines extraction was performed with high accuracy and lower number of training parameters making it suitable for real clinical applications and continuous learning.


Subject(s)
Deep Learning , Radiographic Image Interpretation, Computer-Assisted , Algorithms , Coronary Angiography , Coronary Vessels/diagnostic imaging
2.
J Pediatr Urol ; 14(2): 172.e1-172.e6, 2018 04.
Article in English | MEDLINE | ID: mdl-29482891

ABSTRACT

INTRODUCTION: Botulinum toxin A (BTX-A) is a neurotoxin that inhibits acetylcholine release by cleaving cytosolic synaptosome-associated protein 25 (SNAP-25) and results in bladder relaxation. A BTX-A intravesical injection has been established as an effective option for treating detrusor overactivity. STUDY DESIGN: Sixty female Sprague Dawley rats were equally divided into control and experimental groups. Control Groups 1 to 3 received: BTX-A 10 units + saline instillation; hyaluronan-phosphatidylethanolamine (HA-PE) 0.5 g + saline instillation; and BTX-A 5 Uintra-detrusor injections, respectively. Treatment Groups 4 to 6 received: Alexa®594-labeled BTX-A 10 U + HA-PE 0.5 g + saline instillation; BTX-A 5 U + HA-PE 0.2-0.5 g instilled for 60 min; and BTX-A 10 U + HA-PE 0.2-0.5 g instilled for 30 min, respectively. All procedures were performed under isoflurane general anesthesia. The primary outcome of this study was the degree of SNAP-25 staining in control and experimental groups compared to Group 3 (detrusor muscle injection). Urodynamic studies were performed at baseline and at day 14 after 1% acetic acid (AA) instillation, to evaluate the maximum pressure during filling (MP) and inter-contraction intervals (ICI). Group 4 rats were examined for Alexa®594 fluorescence to demonstrate physical translocation of BTX-A-HA-PE complex. Standard histology was performed to assess the effect of HA-PE on bladder mucosa and detrusor muscle. RESULTS: Group 3 showed the least SNAP-25 staining (7.3 ± 5.0%) compared with all groups except Group 5A (12.4 ± 12.27%, P = 1.0). Group 6A, which had high HA-PE dose but a shorter instillation time, showed fairly extensive SNAP-25 staining (22.9 ± 10%). Confocal microscopy of Group 4 confirmed the presence of Alexa®594 fluorescence across the urothelium. Urodynamic parameters were not significantly different at baseline (P = 1.0). After acetic acid instillation, Group 5A showed minimal change in ICI, which was comparable to ICI in Group 3 rats. DISCUSSION: SNAP-25 staining in Group 5A was comparable to Group 3, suggesting that adequate HA-PE and instillation time allows the efficacy of this carrier mechanism to be comparable to standard intra-detrusor injections. All other groups showed significantly higher SNAP-25 staining compared to Group 3. A dose response effect was demonstrated; higher dose of HA-PE (Group 5A vs Group 5B) and longer instillation time (Group 5 vs Group 6) led to lower SNAP-25 staining. CONCLUSION: This novel method of BTX-A delivery to the bladder using a carrier (HA-PE) is promising and requires further investigation. Using a larger animal model, identifying an optimal dose of HA-PE and instillation time, and reproducing the current results are further required to validate this carrier.


Subject(s)
Botulinum Toxins, Type A/administration & dosage , Drug Carriers/administration & dosage , Hyaluronic Acid/administration & dosage , Phosphatidylethanolamines/therapeutic use , Urinary Bladder, Neurogenic/drug therapy , Urinary Bladder/drug effects , Administration, Intravesical , Analysis of Variance , Animals , Disease Models, Animal , Female , Neuromuscular Agents/administration & dosage , Random Allocation , Rats , Rats, Sprague-Dawley , Sensitivity and Specificity , Treatment Outcome , Urodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...