Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Front Pharmacol ; 15: 1384834, 2024.
Article in English | MEDLINE | ID: mdl-38751780

ABSTRACT

Introduction: Administration of high doses of acetaminophen (APAP) results in liver injury. Oxidative stress and iron overload play roles in the pathogenesis of APAP-induced hepatotoxicity. The present study assessed the potential hepatoprotective effects of phytic acid (PA), a natural antioxidant and iron chelator, on APAP-induced hepatotoxicity and the possible underlying mechanism through its effects on CYP2E1 gene expression, iron homeostasis, oxidative stress, and SIRT-1 expression levels. Methods: Twenty-four adult male albino mice were used in this study. Mice were divided into four groups (six mice in each group): control, APAP-treated, PA-treated and APAP + PA-treated groups. Liver function tests, serum and liver tissue iron load were evaluated in all the study groups. Hepatic tissue homogenates were used to detect oxidative stress markers, including malondialdehyde (MDA) and reduced glutathione (GSH). Histological hepatic evaluation and immunohistochemistry of SIRT-1 were performed. Quantitative real-time PCR was used for the assessment of CYP2E1 and SIRT-1 gene expressions. APAP-induced biochemical and structural hepatic changes were reported. Results: PA administration showed beneficial effects on APAP-induced hepatotoxicity through improvements in liver functions, decreased CYP2E1 gene expression, decreased serum and liver iron load, decreased MDA, increased GSH, increased SIRT-1 expression level and improvement in hepatic architecture. Conclusion: Conclusively, PA can be considered a potential compound that can attenuate acetaminophen-induced hepatotoxicity through its role as an iron chelator and antioxidant, as well as the up-regulation of SIRT-1 and down-regulation of CYP2E1.

2.
Front Neurosci ; 17: 1265134, 2023.
Article in English | MEDLINE | ID: mdl-38105928

ABSTRACT

Introduction: Recent studies have reported a strong relationship between diabetes and anxiety- and depression-like behaviors; however, there is a lack of information on the underlying pathophysiology. Alkaline Zamzam water (ZW), which is rich in several trace elements, has neuroprotective properties. This study aimed to investigate the anxiolytic and antidepressant effects of ZW against diabetes-induced behavioral changes and shed light on the possible underlying mechanisms. Methods: Forty-eight rats were divided into four experimental groups (n = 12): group I (control group), group II (Zamzam water group), group III (diabetic group), and group IV (diabetic + Zamzam water group). Diabetes was induced by an intraperitoneal injection of 60 mg/kg streptozotocin (STZ). At the end of the experiment, the forced swimming test (FST) was used to assess depression-like effects. The elevated plus maze test (EPMT) and open field test (OFT) were performed to evaluate anxiety-like behavior. Blood levels of the hypothalamic-pituitary-adrenal (HPA) axis were measured, and prefrontal cortex and hippocampal tissue samples were removed for histological, immunohistochemical, ELISA, and Q-PCR analyses. Results: ZW significantly decreased the immobility time in the FST, indicating an antidepressant effect (p < 0.001). Additionally, ZW significantly improved the OFT and open field entry (OFE) percentages in the EPMT, increasing center crossing and decreasing grooming and fecal boli in the OFT. This indicated an anxiolytic-like effect in diabetic rats with histological improvement. Interestingly, ZW significantly increased prefrontal cortical and hippocampal levels of antioxidant enzymes and the Nrf2/HO-1 pathway. It also modulated the HPA axis by increasing cortisol and corticotropin-releasing hormone (CRH) levels, with a decrease in ACTH and an increase in monoamine neurotransmitters. Furthermore, diabetic rats that received ZW showed a decrease in the inflammatory markers TNF-α and GFAP by immunohistochemistry and in the mRNA levels of NFκB, IL-1ß, and IL6. In addition, ZW downregulated the expression of the BDNF/ERK2/CREP pathway. Conclusion: Our results suggested a neuroprotective effect of ZW against diabetes-induced anxiety- and depression-like behaviors and explored the underlying mechanisms. These findings suggest a promising therapeutic strategy for patients with diabetes who experience anxiety and depression.

3.
Egypt J Immunol ; 30(4): 145-154, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37801033

ABSTRACT

Although many drugs are available for childhood systemic lupus erythematosus (SLE) treatment, the adverse effects and poor response in some cases make it crucial to find new drugs targeting various pathways in disease pathogenesis to improve overall outcomes. This study aimed to (i) investigate the effect of Panobinostat on cultured lymphocytes obtained from children with active SLE and (ii) to compare that effect with standard drugs used in SLE, such as Prednisone and hydroxychloroquine. The study included 24 SLE active patients, divided into four equal groups. Lymphocytes were isolated from blood samples of the study patients. According to the study group, cells were treated with either Panobinostat, Prednisolone, hydroxychloroquine, or not treated (control group). After cell culture, the response of lymphocytes upon drug treatment was analyzed in terms of the production of anti-dsDNA antibodies and levels of apoptosis as detected by flow cytometry using annexin V and propidium iodide (PI) staining. The Panobinostat group showed a significant decrease in the viable cell count (p < 0.001). Both Prednisone and hydroxychloroquine decreased anti-dsDNA expression more than the Panobinostat and control groups (p < 0.001 for both). PI was higher in the Prednisone group, and Annexin V was higher in the Panobinostat group compared to other groups; however, their increase did not reach statistically significant levels (p= 0.12 and 0.85, respectively). This is the first study of the Panobinostat effect on cultured lymphocytes of SLE. In conclusion, Panobinostat could be a prospective treatment for B-cell-driven autoimmune diseases such as SLE. However, its effect on autoantibodies levels and different clinical features of SLE still need a thorough evaluation.


Subject(s)
Hydroxychloroquine , Lupus Erythematosus, Systemic , Humans , Child , Hydroxychloroquine/pharmacology , Hydroxychloroquine/therapeutic use , Panobinostat/pharmacology , Panobinostat/therapeutic use , Prednisone/pharmacology , Prednisone/therapeutic use , Annexin A5/pharmacology , Annexin A5/therapeutic use , Lymphocytes
4.
J Exp Pharmacol ; 15: 191-205, 2023.
Article in English | MEDLINE | ID: mdl-37090425

ABSTRACT

Introduction: Owing to their great quantity of hydrolyzable anthocyanins and tannins, the peel and seeds of pomegranate are edible and possess potent anti-oxidant and anti-inflammatory characteristics. This work aims to trace the pomegranate seed and peel ethanolic extracts' anticancer activity against liver cancer cell line, namely HepG2 and related histopathological, immunohistochemical, genetic and oxidative stress profile. Methods: In vitro study for both seed and peel extract showed the prevalence of phenols, polyphenols and acids, those have anti-proliferative potential against liver cancer cell line (HepG2) with 50% inhibitory concentration (IC50) of seed significantly reduced that of peel. Toxicity of test extracts was concentration dependent and accompanied with cell cycle arrest and cell death at theG0/G1 and S phases but not at the G2/M phase. Cell arrest was supplemented with raised ROS, MDA and decreased SOD, GSH and Catalase. Results and discussion: Apoptosis-related genes showed significant up-expression of pro-apoptotic gene (P53), Cy-C, Bax, and casp-3 and down expression of anti-apoptotic gene (Bcl-2). Also, Casp-3 and P53 proteins were substantially expressed under the effect of test extracts. Histopathological study demonstrated that the untreated cells (control group) were regular cells with nuclear pleomorphism and hyperchromatic nuclei, while seed and peel extracts-treated cells showed necrosis, mixed euchromatin and heterochromatin, intra-nuclear eosinophilic structures, burst cell membranes, and the shrunken apoptotic cells with nuclear membranes and irregular cells. Finally, PCNA gene detected by immunohistochemistry was down regulated significantly under the effect of seed extract treatment than in case of cell medication with peel extract.

5.
Toxics ; 11(4)2023 Apr 16.
Article in English | MEDLINE | ID: mdl-37112604

ABSTRACT

Cyclosporine (CsA) is considered one of the main components of treatment protocols for organ transplantation owing to its immunosuppressive effect. However, its use is very restricted due to its nephrotoxic effect. ZW is an alkaline fluid rich in various trace elements and has a great ability to stimulate antioxidant processes. This study aimed to investigate the possible mitigating effect of ZW on CsA-induced nephrotoxicity and its underlying mechanisms. Forty rats were allocated into four groups (n = 10): a control group, ZW group, cyclosporine A group (injected subcutaneously (SC) with CsA (20 mg/kg/day)), and cyclosporine A+ Zamzam water group (administered CsA (SC) and ZW as their only drinking water (100 mL/cage/day) for 21 days). Exposure to CsA significantly (p < 0.001) increased the serum creatinine level, lipid peroxidation marker level (malondialdehyde; MDA), and the expression of apoptotic markers procaspase-8, caspase-8, caspase- 9, calpain, cytochrome c, caspas-3, P62, and mTOR in renal tissues. Meanwhile, it markedly decreased (p< 0.001) the autophagic markers (AMPK, ULK-I, ATag5, LC3, and Beclin-1), antiapoptotic Bcl-2, and antioxidant enzymes. Moreover, the administration of CsA caused histological alterations in renal tissues. ZW significantly (p < 0.001) reversed all the changes caused by CsA and conclusively achieved a positive outcome in restraining CsA-induced nephrotoxicity, as indicated by the restoration of the histological architecture, improvement of renal function, inhibition of apoptosis, and enhancement of autophagy via the AMPK/mTOR pathway.

6.
Toxics ; 11(1)2022 Dec 20.
Article in English | MEDLINE | ID: mdl-36668728

ABSTRACT

Gentamicin is considered one of the most typical causes of testicular damage. Oxidative stress is a significant contributor to testicular tissue damage. Zamzam water (alkaline in nature) has an antioxidant effect. The purpose of this study was to assess the potential palliative effect of Zamzam water against gentamicin-induced testicular damage. Thirty Rats were separated into three groups, each with ten rats, as follows: The Control received only normal saline. The gentamicin group received 100 mg/kg/day of gentamicin intraperitoneally for six days from day 15 to the end of the experiment. The gentamicin +Zamzam Water group received a dose of gentamicin 100 mg/kg/day intraperitoneally with Zamzam water as their sole source of drinking from day one to day 21. Hormonal assay in serum, histological, immunohistochemical, and ultrastructural examination of testicular tissue with a molecular study were obtained. Pretreatment with Zamzam water significantly p < 0.001 increased serum levels of testosterone, FSH, and LH, as well as the percentage of sperm motility and progressive motility. It also upregulated SOD, CAT, GPx enzymatic activity, gene expression of Nrf2/HO-1, and immunoexpression of PCNA. While the percentage of dead sperm and abnormal sperm, immunoexpression of NFκB, Caspase 3, inflammatory cytokines TNFα, IL-1ß, IL-6, and MDA levels significantly (p < 0.001) declined with histological improvement. It was concluded that Zamzam water as alkaline water possesses antioxidant, anti-inflammatory, and antiapoptotic effects against gentamicin-induced testicular toxicity in vivo.

SELECTION OF CITATIONS
SEARCH DETAIL
...