Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
GM Crops Food ; 3(2): 111-4, 2012.
Article in English | MEDLINE | ID: mdl-22538227

ABSTRACT

Development of a reliable in vitro plant regeneration procedure for hexaploid bread wheat (Triticum aestivum L.) is a prerequisite for its improvement by genetic transformation. Here, we report the effects of two growth regulators, benzyl adenine (BA) and indole acetic acid (IAA) on callus induction and plant regeneration from scutellum cultures of two commercial bread wheat cultivars: Giza 164 and Sakha 69. Callus induction was obtained from isolated embryos cultured on modified Murashige and Skoog (MS) basal medium. After four weeks of callus induction, all calli were plated on MS basal medium for regeneration. Wheat genotype and callus induction medium played a dominant role in plantlet regeneration. 2.0 mg/L BA and 0.2 mg/L IAA were the best combinations for inducing callus and let to highest regeneration frequency (81.67%) across the cultivars. Overall, based on our medium conditions, Giza 164 displayed higher regeneration frequency (81.11%) than Sakha 69. These results will facilitate genetic transformation for the economic varieties Giza 164 and Sakha 69.


Subject(s)
Indoleacetic Acids/pharmacology , Kinetin/pharmacology , Regeneration/drug effects , Triticum/physiology , Benzyl Compounds , Dose-Response Relationship, Drug , Genotype , Plant Growth Regulators/pharmacology , Plant Shoots/genetics , Plant Shoots/physiology , Polyploidy , Purines , Species Specificity , Tissue Culture Techniques , Triticum/classification , Triticum/genetics
2.
Plant Cell Physiol ; 50(5): 986-97, 2009 May.
Article in English | MEDLINE | ID: mdl-19369274

ABSTRACT

Salinity is one of the major environmental factors limiting growth and productivity of rice plants. In this study, the effect of salt stress on phospholipid signaling responses in rice leaves was investigated. Leaf cuts were radiolabeled with 32P-orthophosphate and the lipids extracted and analyzed by thin-layer chromatography, autoradiography and phosphoimaging. Phospholipids were identified by co-migration of known standards. Results showed that 32P(i) was rapidly incorporated into the minor lipids, phosphatidylinositol bisphosphate (PIP2) and phosphatidic acid (PA) and, interestingly, also into the structural lipids phosphatidylethanolamine (PE) and phosphatidylglycerol (PG), which normally label relatively slowly, like phosphatidylcholine (PC) and phosphatidylinositol (PI). Only very small amounts of PIP2 were found. However, in response to salt stress (NaCl), PIP2 levels rapidly (<30 min) increased up to 4-fold, in a time- and dose-dependent manner. PA and its phosphorylated product, diacylglycerolpyrophosphate (DGPP), also increased upon NaCl stress, while cardiolipin (CL) levels decreased. All other phospholipid levels remained unchanged. PA signaling can be generated via the combined action of phospholipase C (PLC) and diacylglycerol kinase (DGK) or directly via phospholipase D (PLD). The latter can be measured in vivo, using a transphosphatidylation assay. Interestingly, these measurements revealed that salt stress inhibited PLD activity, indicating that the salt stress-induced PA response was not due to PLD activity. Comparison of the 32P-lipid responses in salt-tolerant and salt-sensitive cultivars revealed no significant differences. Together these results show that salt stress rapidly activates several lipid responses in rice leaves but that these responses do not explain the difference in salt tolerance between sensitive and tolerant cultivars.


Subject(s)
Oryza/metabolism , Phospholipids/metabolism , Signal Transduction , Sodium Chloride/pharmacology , Oryza/drug effects , Phosphates/metabolism , Phospholipase D/metabolism , Plant Leaves/drug effects , Plant Leaves/metabolism , Salt-Tolerant Plants/metabolism , Stress, Physiological
3.
Curr Issues Mol Biol ; 11 Suppl 1: i47-54, 2009.
Article in English | MEDLINE | ID: mdl-19193964

ABSTRACT

A reliable regeneration system for faba bean has been difficult to establish and therefore, the genetic improvement of Vicia faba L. was delayed. The paper describes a method of somatic embryo induction in callus of V. faba. Two Egyptian faba bean cultivars 'Giza 2' and '24 Hyto' were used. Callus was induced from epicotyls and shoot tips cultured on MS or Gamborg medium supplemented with 3% sucrose and 0.025% (w/v) for each of ascorbic and citric acid, 0.8% agar and different concentrations of 10 mg/l BAP, 0.5 mg/l of each NAA and 2,4-dichlorophenoxyacetic acid (M1) and 1 mg/l BAP and 0.5 mg/l NAA (M2) . The media with BAP, NAA and 2,4-D were optimal for embryogenic callus induction. Somatic embryos developed after transfer of the callus to 1/2 B5 medium with no plant growth regulators. There were various stages of somatic embryo development present including globular, heart-shaped, torpedo, and cotyledonary stages. Embryos developed into plantlets and plants were regenerated. RAPD analyses were performed to investigate the genetic stability of the regenerated plants obtained from different treatments and different explants. The cultivar Giza 2 exhibited more genetic stability than cultivar 24 Hyto. In conclusion, a regeneration system was established suitable for both gene transformation and the isolation of somaclonal mutants. The regeneration system will be used in order to improve the nutritional value of faba bean.


Subject(s)
Plant Growth Regulators/physiology , Plant Shoots/physiology , Regeneration/physiology , Vicia faba/physiology , Cells, Cultured , Culture Media , Plant Growth Regulators/pharmacology , Plant Shoots/embryology , Plant Shoots/genetics , Tissue Culture Techniques , Vicia faba/embryology , Vicia faba/genetics
4.
Mol Genet Genomics ; 274(4): 428-41, 2005 Nov.
Article in English | MEDLINE | ID: mdl-16187061

ABSTRACT

There is an immediate need for a high-density genetic map of cotton anchored with fiber genes to facilitate marker-assisted selection (MAS) for improved fiber traits. With this goal in mind, genetic mapping with a new set of microsatellite markers [comprising both simple (SSR) and complex (CSR) sequence repeat markers] was performed on 183 recombinant inbred lines (RILs) developed from the progeny of the interspecific cross Gossypium hirsutum L. cv. TM1 x Gossypium barbadense L. Pima 3-79. Microsatellite markers were developed using 1557 ESTs-containing SSRs (> or = 10 bp) and 5794 EST-containing CSRs (> or = 12 bp) obtained from approximately 14,000 consensus sequences derived from fiber ESTs generated from the cultivated diploid species Gossypium arboreum L. cv AKA8401. From a total of 1232 EST-derived SSR (MUSS) and CSR (MUCS) primer-pairs, 1019 (83%) successfully amplified PCR products from a survey panel of six Gossypium species; 202 (19.8%) were polymorphic between the G. hirsutum L. and G. barbadense L. parents of the interspecific mapping population. Among these polymorphic markers, only 86 (42.6%) showed significant sequence homology to annotated genes with known function. The chromosomal locations of 36 microsatellites were associated with 14 chromosomes and/or 13 chromosome arms of the cotton genome by hypoaneuploid deficiency analysis, enabling us to assign genetic linkage groups (LG) to specific chromosomes. The resulting genetic map consists of 193 loci, including 121 new fiber loci not previously mapped. These fiber loci were mapped to 19 chromosomes and 11 LG spanning 1277 cM, providing approximately 27% genome coverage. Preliminary quantitative trait loci analysis suggested that chromosomes 2, 3, 15, and 18 may harbor genes for traits related to fiber quality. These new PCR-based microsatellite markers derived from cotton fiber ESTs will facilitate the development of a high-resolution integrated genetic map of cotton for structural and functional study of fiber genes and MAS of genes that enhance fiber quality.


Subject(s)
Chromosome Mapping/methods , Expressed Sequence Tags , Gossypium/chemistry , Gossypium/genetics , Microsatellite Repeats/genetics , Aneuploidy , Chromosomes, Plant , Cotton Fiber , DNA , DNA, Complementary/metabolism , Diploidy , Genetic Linkage , Genetic Techniques , Genome, Plant , Models, Genetic , Models, Statistical , Polymerase Chain Reaction , Polymorphism, Genetic , Polymorphism, Restriction Fragment Length , Recombinant Proteins/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...