Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
J AOAC Int ; 100(1): 152-158, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27765082

ABSTRACT

Multidrug-resistant (MDR) Acinetobacter baumannii infections are a great public health concern and demand continuous surveillance and antibiotic stewardship. Virulence traits and the pathogenicity of Acinetobacter are less studied compared with the molecular epidemiological and antibiotic resistance profile of this organism. In our present study, we investigated the primary characteristics contributing to the virulence of MDR A. baumannii isolates and compared them with avirulent isolates. A total of 32 well-characterized MDR A. baumannii clinical isolates and 22 avirulent isolates from a healthy individual were subjected to multilocus sequence typing and polymerase chain reaction (PCR) for a variety of biofilm-associated genes. Additionally, a number of in vitro tests were performed to determine virulence properties. Isolates were found to relate to six sequence types (STs) in which the dominant sequence was ST557 in clinical isolates, followed by ST195 and ST208. However, ST557 and ST222 were absent in avirulent isolates. All STs belonged to clonal complex 2 and clonal lineage 2, which is considered to be a universal clone. PCR analysis showed that most clinical isolates were positive for biofilm-forming genes, such as csu and bap, and also carried pga and ompA genes, which were less common in avirulent isolates. Biofilm formation, phospholipase C production, hemolytic activity, and acinetobactin production occurred significantly more frequently in clinical isolates compared with avirulent isolates. Though A. baumannii clonal lineages showed common virulence traits, they differed in virulent phenotype expression. These findings further support previous studies indicating that A. baumannii is a versatile pathogen with an ability to acquire iron and survive in iron-limiting conditions, highlighting the acinetobactin-mediated iron acquisition mechanisms involved in the pathogenesis of A. baumannii infections.


Subject(s)
Acinetobacter baumannii/genetics , Drug Resistance, Multiple, Bacterial , Virulence Factors/genetics , Acinetobacter Infections/microbiology , Acinetobacter baumannii/classification , Anti-Bacterial Agents , Drug Combinations , Humans , Microbial Sensitivity Tests , Multilocus Sequence Typing , Oils , Phenols
2.
J AOAC Int ; 99(5): 1233-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27349444

ABSTRACT

The study was designed to investigate the anticancer effect of phenazine-1-carboxamide (PCN) isolated from the bacterium Pantoea agglomerans naturally present in soil. PCN showed cytotoxicity in a dose-dependent manner, and inhibitory concentrations on the cancer cell lines A549, HeLa, and SW480 were between 32 and 40 µM. Significantly increased concentrations of lactate dehydrogenase were found with increasing concentrations of PCN, which resulted in increased destruction of the cancer cell membrane. A significantly increased p53 level was accompanied by the increased production of cytochrome c protein in all cancer cell lines studied. This condition in cells leads to the overexpression of caspase 3 and Bcl-2 family proteins. Upregulation and downregulation of proapoptotic and antiproapoptotic proteins were analyzed for their messenger RNA and protein expression. The activation of caspases and their cleavage compounds paves the way for the complete apoptosis process in cancer cells. We conclude that P. agglomerans-derived PCN acts as an effective anticancer drug or compound.


Subject(s)
Antineoplastic Agents/isolation & purification , Antineoplastic Agents/pharmacology , Pantoea/chemistry , Phenazines/isolation & purification , Phenazines/pharmacology , Antineoplastic Agents/chemistry , Apoptosis/drug effects , Cell Cycle/drug effects , Cell Proliferation/drug effects , Dose-Response Relationship, Drug , Drug Screening Assays, Antitumor , Humans , Molecular Structure , Phenazines/chemistry , Structure-Activity Relationship , Tumor Cells, Cultured
SELECTION OF CITATIONS
SEARCH DETAIL
...