Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 5299, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38438426

ABSTRACT

This study aims to prepare mono and gemini nonionic emulsifiers differing in HLB to utilize in formulated metal cutting fluids. Also, the cationic gemini surfactant (GCS) was prepared and applied as a corrosion inhibitor and biocide in the formulations. FT-IR and NMR confirmed the chemical structure of the prepared compounds. Different oil package formulations were prepared by adding different trial concentrations of the additives (emulsifier, corrosion inhibitor, coupling agent, and biocide) to the eco-friendly vegetable oil (castor oil). Standard procedures were performed to assess the stability of the formulated base oil packages. Six Formulas demonstrated the greatest oil stability. Oil in water emulsions with varying formulated oil ratios (5-15 wt%) were prepared. A standard test was carried out to evaluate their performance as emulsion stability. It's been demonstrated that Formulas II and V produced stable emulsions. The wettability alteration of formulas II and V on different metal surfaces was evaluated. The droplet size of formulated castor oil in water was determined via DLS. Corrosion test and tribological properties were also performed. The findings of this study indicate that Formula V is a good choice as a renewable addition for enhancing a variety of performance characteristics of the water-based cutting fluid.

2.
Sci Rep ; 13(1): 21406, 2023 Dec 04.
Article in English | MEDLINE | ID: mdl-38049449

ABSTRACT

The conventional Metal cutting fluids (MCFs) used are mineral-based petroleum oils that perform well but are toxic and difficult to dispose of; therefore, these are hazardous to human health as well as the environment. This issue can be solved by using natural vegetable oil-based MCF, which are readily available, environment and human-friendly, and renewable. Therefore, we synthesized various types of emulsifiers (anionic, and nonionic with different ethylene oxide units as well as mono and gemini cationic surfactants as corrosion inhibitors and biocides) based on recycled vegetable oil (RO) from spent bleaching earth (SBE), and elucidated their chemical structures by different spectroscopic techniques. The individually synthesized emulsifiers (anionic, and nonionic with different ethylene oxide units) at different ratios (8-15 by wt.%) and mixed emulsifiers (anionic/nonionic, nonionic/nonionic with different degrees of ethylene oxide) at different ratios (8-12 by wt.%) were utilized as additives in the preparation of different vegetable residual oil-based MCF formulations. The mixed emulsifiers at different ratios of nonionic/nonionic with hydrophilic-lipophilic balance (HLB) value 10 (Formulas I, II, III, and IV), and anionic/nonionic (Formula V, and VI) exhibited stable emulsions compared to individual emulsifiers. Formulas (I and VI) displayed good protection effectiveness in corrosion tests. Formula VI had better wettability (25.22 on CS, 23.68 on Al, and 22.28 on WC) and a smaller particle size (63.97 nm). Tribological properties of Formula VI were also performed. The results exhibit that Formula VI is consistent with the commercial sample. As a result, this study contributed to the resolution of one of the industry's problems.

SELECTION OF CITATIONS
SEARCH DETAIL
...