Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Language
Publication year range
1.
Environ Toxicol Pharmacol ; 91: 103817, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35091105

ABSTRACT

Diclofenac (DIC)-induced acute kidney injury (AKI) causes high morbidity and mortality. With the absence of satisfactory treatment, we investigated the protective effects of 6-Paradol (PDL) against DIC-induced AKI, with focus on renal autophagy and NLRP3 inflammasome pathways . PDL has anti-inflammatory, antioxidant and AMPK-activation properties. PDL was administered to DIC-challenged rats. Nephrotoxicity, oxidative stress, inflammatory, and autophagy markers and histopathological examinations were evaluated. Compared to DIC, PDL restored serum nephrotoxicity, renal oxidative stress and pro-inflammatory markers. PDL almost restored renal architecture, upregulated renal Nrf2 pathway via enhancing Nrf2 mRNA expression and HO-1 levels. PDL suppressed renal NF-κB mRNA expression, and NLRP3 inflammasome pathway expression. Moreover, PDL enhanced renal autophagy through upregulating LC3B, AMPK and SIRT-1, and suppressed mTOR, p-AKT mRNA expressions and phosphorylated-p62 levels. Our study confirmed that autophagy suppression mediates DIC-induced AKI via AMPK/mTOR/AKT and NLRP3-inflammasome pathways. Also, PDL's nephroprotective effects could provide a promising therapeutic approach against DIC-induced AKI.


Subject(s)
Acute Kidney Injury , Inflammasomes , AMP-Activated Protein Kinases/metabolism , Acute Kidney Injury/chemically induced , Acute Kidney Injury/drug therapy , Acute Kidney Injury/metabolism , Animals , Autophagy , Diclofenac , Guaiacol/analogs & derivatives , Inflammasomes/metabolism , Ketones , NLR Family, Pyrin Domain-Containing 3 Protein/genetics , NLR Family, Pyrin Domain-Containing 3 Protein/metabolism , Proto-Oncogene Proteins c-akt/metabolism , Rats , Signal Transduction , TOR Serine-Threonine Kinases/metabolism
2.
J Ethnopharmacol ; 273: 113939, 2021 Jun 12.
Article in English | MEDLINE | ID: mdl-33610709

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: In Africa, Aframomum species have been traditionally used to treat illnesses such as inflammation, hypertension, diarrhea, stomachache and fever. Moreover, Aframomum melegueta seed extracts (AMSE) are used in traditional medicine to relieve stomachaches and inflammatory diseases. AIM: Chronic administration of diclofenac (DIC) has been reported to cause acute kidney injury (AKI), which is a serious health condition. The nephroprotective effect of AMSE is yet to be elucidated. Accordingly, this study aims to investigate the phytoconstituents of standardized AMSE, evaluate its nephroprotective effects against DIC-induced AKI in rats, and elaborate its underlying molecular mechanisms. MATERIALS AND METHODS: The quantitative estimation of major AMSE constituents and profiling of its secondary metabolites were conducted via RP-HPLC and LC-ESI/Triple TOF/MS, respectively. Next, DIC (50 mg/kg)-induced AKI was achieved in Sprague-Dawley rats and DIC-challenged rats were administered AMSE (100 and 200 mg/kg) orally. All treatments were administered for five consecutive days. Blood samples were collected and the sera were used for estimating creatinine, urea and, kidney injury molecule (KIM)-1 levels. Kidney specimens were histopathologically assessed and immunohistochemically examined for c-Myc expression. A portion of the kidney tissue was homogenized and examined for levels of oxidative stress markers (MDA and GSH). Heme oxygenase (HO)-1, TNF-α, IL-6, Bax, Bcl2 and caspase-3 renal levels were quantified by ELISA. Moreover, the protein expression levels of NF-Ò¡B p65 was quantified using Western blot analysis, whereas mRNA expression levels of AMPK, SIRT-1, nuclear factor erythroid-2-related factor (Nrf2) and STAT3 were detected using qRT-PCR in the remaining kidney tissues. RESULTS: Standardized AMSE was shown to primarily contain 6-gingerol, 6-shogaol and 6-paradol among the 73 compounds that were detected via LC-ESI/Triple TOF/MS including phenolic acids, hydroxyphenylalkanes, diarylheptanoids and fatty acids. Relative to DIC-intoxicated rats, AMSE modulated serum creatinine, urea, KIM-1, renal MDA, TNF-α, IL-6, Bax, and caspase-3 levels. AMSE has also improved renal tissue architecture, enhanced GSH and HO-1 levels, and upregulated renal Nrf2, AMPK, and SIRT-1 mRNA expression levels. Furthermore, AMSE suppressed NF-Ò¡B p65 protein and STAT3 mRNA expression, and further reduced c-Myc immunohistochemical expression in renal tissues. Overall, our findings revealed that AMSE counteracted DIC-induced AKI via its antioxidant, anti-inflammatory, and antiapoptotic activities. Moreover, AMSE activated Nrf2/HO1 and AMPK/SIRT1, and inhibited NF-Ò¡B/STAT3 signaling pathways. Therefore, AMSE is a promising agent for inhibiting DIC-induced nephrotoxicity.


Subject(s)
Acute Kidney Injury/prevention & control , Anti-Inflammatory Agents/pharmacology , Antioxidants/pharmacology , Plant Extracts/pharmacology , Protective Agents/pharmacology , Seeds/chemistry , Zingiberaceae/chemistry , Acute Kidney Injury/chemically induced , Acute Kidney Injury/metabolism , Acute Kidney Injury/pathology , Adenylate Kinase/genetics , Adenylate Kinase/metabolism , Animals , Anti-Inflammatory Agents/therapeutic use , Antioxidants/therapeutic use , Apoptosis/drug effects , Cytokines/metabolism , Diclofenac/toxicity , Disease Models, Animal , Inflammation/chemically induced , Inflammation/metabolism , Male , NF-E2-Related Factor 2/genetics , NF-E2-Related Factor 2/metabolism , Oxidative Stress/drug effects , Plant Extracts/therapeutic use , Protective Agents/therapeutic use , Rats, Sprague-Dawley , STAT3 Transcription Factor/genetics , STAT3 Transcription Factor/metabolism , Sirtuin 1/genetics , Sirtuin 1/metabolism , Zingiberaceae/metabolism
3.
J Chromatogr Sci ; 57(4): 349-360, 2019 Apr 01.
Article in English | MEDLINE | ID: mdl-30796772

ABSTRACT

Citrus plants are one of the most economical fruit bearing trees grown worldwide for their medicinal use as well as for the flavor and food industry. This study attempts to characterize the metabolome difference in polyphenols of four Citrus species fruit peels; C. reticulata Blanco cv. Egyptian, C. sinensis (L.) Osbeck cv. Olinda Valencia, C. aurantiifolia Swingle cv. Mexican and C. paradisi Macfad. cv. Duncan via ultra-performance liquid chromatography coupled with quadrupole-time-of-flight-mass spectrometry platform. A total of 163 metabolites were characterized of which 28 were detected for the first time in Citrus cultivars including eight coumarin derivatives, three cinnamic acids conjugates, one polymethoxyflavone, 5 O-glycosides, 2 C-glycosides, three flavone-di-O-glucosides and six acetyl sugar derivatives of luteolin and kaempferol in addition to oxygenated and methylated fatty acids. Flavonoids amounted for the most abundant secondary metabolites class in the studied Citrus peels. The relative variability among these Citrus peels was estimated using clustering analysis with flavonoids accounting for cvs. segregation. Hierarchical clustering analysis revealed the chemical similarity of C. reticulata, C. sinensis and C. paradise peels and being distant them from that of C. aurantiifolia. To the best of our knowledge, this study provides the first report for metabolite compositional differences in these four Citrus peels.


Subject(s)
Chromatography, High Pressure Liquid/methods , Citrus , Fruit , Mass Spectrometry/methods , Metabolome/physiology , Citrus/chemistry , Citrus/metabolism , Cluster Analysis , Flavonoids/analysis , Fruit/chemistry , Fruit/metabolism , Glycosides/analysis , Metabolomics , Multivariate Analysis , Plant Extracts/analysis , Plant Extracts/chemistry
4.
Rev. bras. farmacogn ; 27(4): 488-494, July-Aug. 2017. tab, graf
Article in English | LILACS | ID: biblio-898688

ABSTRACT

ABSTRACT Citrus is an economically important fruit for Egypt, but its peel also is one of the major sources of agricultural waste. Due to its fermentation, this waste causes many economic and environmental problems. Therefore it is worthwhile to investigate ways to make use of this citrus waste generated by the juice industry. This study was aimed to explore the hypocholesterolemic, antidiabetic activities of four varieties of citrus peels agrowastes, to isolate the main flavonoids in the active fractions and to quantify them by HPLC method for nutraceutical purposes. All the tested samples of the agro-waste Citrus fruits peels showed significant decrease in cholesterol, triacylglyceride and glucose. The most decrease in cholesterol level was observed by mandarin peels aqueous homogenate and its hexane fraction (59.3% and 56.8%, respectively) reaching the same effect as the reference drug used (54.7%). Mostly, all samples decrease triacylglyceride (by 36%-80.6%) better than the reference drug used (by 35%), while, glucose was decreased (by 71.1%-82.8 and 68.6%-79.6%, respectively) mostly by the aqueous homogenates (except lime) and alcoholic extracts (except mandarin) of Citrus fruits peels better than the reference drug used (by 68.3%). All the isolated pectin, from the four cultivars, has significant effect on the three parameters. The comparative HPLC rapid quantification of nobiletin in the different by-product citrus varieties hexane fractions revealed that nobiletin is present in higher concentration in mandarin (10.14%) than the other species. Nobiletin and 4′,5,7,8-tetramethoxy flavone were isolated from mandarin peels hexane fraction by chromatographic fractionation. This is the first report of the comparative HPLC quantification of nobiletin and biological studies of different citrus peels species as agro-waste products. Based on these results, we suggest the possibility that Citrus fruits peels may be considered as an antidiabetic and hypocholesterolemic nutraceutical product.

5.
Nat Prod Res ; 29(16): 1578-83, 2015.
Article in English | MEDLINE | ID: mdl-25492809

ABSTRACT

The hepatoprotective and antioxidant activities of the hydroalcoholic extract (PE) of pea (Pisum sativum L.) by-product were evaluated, using CCl4-induced oxidative stress and hepatic damage in rats. These activities were assessed via measuring alanine aminotransferase (ALT), aspartate aminotransferase (AST), total protein and albumin, malondialdehyde (MDA), reduced glutathione (GSH), protein thiols (PSH), nitrite/nitrate levels, glutathione-peroxidase (GSH-Px), glutathione-S-transferase (GST) activities, as well as, histopathological evaluation. PE revealed significant hepatoprotective and antioxidant activities mostly found in n-butanol fraction. Chromatographic fractionation of this active fraction led to the isolation of five flavonoid glycosides namely, quercetin-3-O-sophorotrioside (1), quercetin-3-O-rutinoside (2), quercetin-3-O-(6″″-O-E sinapoyl)-sophorotrioside (3), quercetin-3-O-(6″″-O-E feruloyl)-sophorotrioside (4) and quercetin-3-O-ß-D-glucopyranoside (5). The isolated compounds were quantified in PE, using a validated HPLC method and the nutritional composition of pea by-product was also investigated. Our results suggest that pea by-product contained biologically active constituents which can be utilised to obtain high value added products for nutraceutical use.


Subject(s)
Antioxidants/chemistry , Liver/drug effects , Oxidative Stress/drug effects , Pisum sativum/chemistry , Plant Extracts/chemistry , Animals , Molecular Structure , Quercetin/chemistry , Rats
SELECTION OF CITATIONS
SEARCH DETAIL
...