Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Egypt Natl Canc Inst ; 35(1): 33, 2023 Oct 23.
Article in English | MEDLINE | ID: mdl-37870653

ABSTRACT

BACKGROUND: Chronic hepatitis B virus (HBV) infection is a serious global health concern, with an increased incidence and risk of developing cirrhosis and hepatocellular carcinoma (HCC). Patients chronically infected with HBV are likely to experience chronic oxidative stress, leading to mitochondrial dysfunction. Photobiomodulation is induced by the absorption of low-level laser therapy (LLLT) with a red or infrared laser by cytochrome C oxidase enzyme, resulting in mitochondrial photoactivation. Although it is widely used in clinical practice, the use of LLL as adjuvant therapy for persistent HBV infection is uncommon. This study aimed to investigate the effect of LLLT dosage from 2 J/cm2 to 10 J/cm2 of red diode laser (650 nm) on both hepatoma cell lines (HepG2.2.15 [integrated HBV genome stable cell model] and non-integrated HepG2), with a subsequent impact on HBVsvp production. METHODS: The present study evaluated the effects of different fluences of low-level laser therapy (LLLT) irradiation on various aspects of hepatoma cell behavior, including morphology, viability, ultrastructure, and its impact on HBVsvp synthesis. RESULTS: In response to LLLT irradiation, we observed a considerable reduction in viability, proliferation, and HBVsvp production in both hepatoma cell lines HepG2.2.15 and HepG2. Ultrastructural modification of mitochondria and nuclear membranes: This effect was dose, cell type, and time-dependent. CONCLUSIONS: The use of LLLT may be a promising therapy for HCC and HBV patients by reducing cell proliferation, HBVsvp production, and altering mitochondrial and nuclear structure involved in cellular death inducers. Further research is required to explore its clinical application.


Subject(s)
Carcinoma, Hepatocellular , Hepatitis B, Chronic , Hepatitis B , Liver Neoplasms , Humans , Carcinoma, Hepatocellular/radiotherapy , Liver Neoplasms/radiotherapy , Liver Neoplasms/pathology , Cell Line , Hepatitis B virus/genetics
2.
Gut Pathog ; 14(1): 25, 2022 Jun 15.
Article in English | MEDLINE | ID: mdl-35706051

ABSTRACT

BACKGROUND: Composition of gut microbiota has recently been suggested as a key factor persuading the pathogenesis of numerous human diseases including hepatic cirrhosis. OBJECTIVE: To evaluate the potential impact of Lactobacillus acidophilus and Bifidobacterium bifidum microbiota on the progression of hepatic histopathological changes among patients with non-cirrhotic chronic hepatitis C (HCV) infection with different viral load. Additionally, to assess fecal composition of Lactobacillus acidophilus ATCC-4356 and Bifidobacterium bifidum ATCC-11863 microbiota genotypes MATERIAL AND METHODS: This study was carried out on 40 non-cirrhotic chronically infected HCV patients, and 10 healthy-controls. Liver biopsy and HCV genomic viral load were assessed for all patients after full clinical examination. Lactobacillus acidophilus ATCC-4356 and Bifidobacterium bifidum ATCC-11863 microbiota were assessed in all fecal samples using PCR assay, after counting total lactic acid bacteria. RESULTS: There was a significantly higher difference between the count of both total lactic acid and Lactobacillus acidophilus of healthy controls compared to patients (P-value < 0.001). Though the count of total lactic acid bacteria, and Lactobacillus acidophilus were higher in the cases with early stage of fibrosis (score ≤ 1) compared to those with score > 1, there were no statistically significant differences with both the serum level of hepatitis C viremia (P = 0.850 and 0.977 respectively) and the score of fibrosis (P = 0.246 and 0.260 respectively). Genotypic analysis for the composition of the studied microbiota revealed that diversity was higher in healthy controls compared to patients. CONCLUSIONS: The progression of hepatic fibrosis in HCV chronically infected patients seems to be plausible based on finding the altered Lactobacillus acidophilus and Bifidobacterium bifidum gut microbiota composition. Thus, modulation of these microbiota seems to be a promising target for prevention and control of HCV infection.

3.
Spectrochim Acta A Mol Biomol Spectrosc ; 264: 120221, 2022 Jan 05.
Article in English | MEDLINE | ID: mdl-34391993

ABSTRACT

Photothermal nanomaterials with near-infrared absorption and high energy conversion efficiency have recently attracted significant interest. Polypyrrole-gold nanocomposites (PPy-Au NCs) as photothermal nanoagents are synthesized using ex-situ polymerization method of the modified pyrrole monomers. Microscopic and spectroscopic characterization techniques are used to reveal the surface structure, composition variation and photoelectric properties of PPy-Au NCs, gold nanorods (Au NRs) and polypyyrole nanoparticles (PPy NPs). Their cytotoxic effects on the viability of Ehrlich Ascites Carcinoma cells in the dark are demonstrated. The surface coating of Au NRs with PPy NPs shows an enhancement in the photothermal efficiency of the proposed photothermal nanoagent. The photothermal conversion of nanomaterials are examined using polarized polychromatic incoherent low-energy light source (the energy density of the light is 2.4 J/cm2 per minute and the specific power density is 40 mW/cm2).


Subject(s)
Gold , Nanocomposites , Phototherapy , Polymers/toxicity , Pyrroles/toxicity
4.
Pak J Biol Sci ; 24(3): 424-433, 2021 Jan.
Article in English | MEDLINE | ID: mdl-34486328

ABSTRACT

<b>Background and Objective:</b> Tri-sodium Copper of chlorophyllins (Agri-Safe) is a novel biocide using recently to control the mosquitoes as a larvicide. Because, the lack of adequate data on the toxicity of this compound, more toxicological studies on this new compound are necessary. Therefore the study aimed to evaluate the adverse effects of this new insecticide and in comparison with the traditional insecticide Deltamethrin (DM). <b>Materials and Methods:</b> Twenty-five adult male rats were randomly divided into five groups. The first group was kept in control. The second and third groups were administered at doses of 0.59 and 0.24 mg kg<sup>1</sup> b.wt., of DM. The fourth and 5th groups were administrated at doses of 250 and 100 mg kg<sup>1</sup> b.wt. of Agri-Safe respectively. The administrations were orally by gavage for 90 consecutive days. The rats were humanly sacrificed and whole blood was collected for hematological parameters and bone marrow was collected for mutagenicity assays. <b>Results:</b> The estimated LD<sub>50</sub> of DM and Agri-Safe were 11.76 and more than 5000 mg kg<sup>1</sup> b.wt., respectively. Both insecticides induced slight hepatotoxicity but not nephrotoxicity. The high and low doses of DM induced prominent oxidative stress while Agri-Safe did not induce oxidative stress. The results of genotoxicity revealed that DM caused greater mutagenic effect at high and low doses, while Agri-Safe induced slight significant genotoxicity at high-dose only. <b>Conclusion:</b> It can be concluded that Deltamethrin (DM) can induce oxidative stress and prominent genotoxicity while tri-sodium copper of chlorophyllins has a low side effect and its effect is due to copper elements.


Subject(s)
Insecticides/toxicity , Nitriles/toxicity , Pyrethrins/toxicity , Sunlight/adverse effects , Animals , Egypt , Insecticides/metabolism , Nitriles/metabolism , Pyrethrins/metabolism , Rats , Rats, Wistar
5.
Ann Clin Microbiol Antimicrob ; 15(1): 48, 2016 Aug 17.
Article in English | MEDLINE | ID: mdl-27530257

ABSTRACT

BACKGROUND: Silver nanoparticles (AgNPs) are potential antimicrobials agents, which can be considered as an alternative to antibiotics for the treatment of infections caused by multi-drug resistant bacteria. The antimicrobial effects of double and triple combinations of AgNPs, visible blue light, and the conventional antibiotics amoxicillin, azithromycin, clarithromycin, linezolid, and vancomycin, against ten clinical isolates of methicillin-resistant Staphylococcus aureus (MRSA) were investigated. METHODS: The antimicrobial activity of AgNPs, applied in combination with blue light, against selected isolates of MRSA was investigated at 1/2-1/128 of its minimal inhibitory concentration (MIC) in 24-well plates. The wells were exposed to blue light source at 460 nm and 250 mW for 1 h using a photon emitting diode. Samples were taken at different time intervals, and viable bacterial counts were determined. The double combinations of AgNPs and each of the antibiotics were assessed by the checkerboard method. The killing assay was used to test possible synergistic effects when blue light was further combined to AgNPs and each antibiotic at a time against selected isolates of MRSA. RESULTS: The bactericidal activity of AgNPs, at sub-MIC, and blue light was significantly (p < 0.001) enhanced when both agents were applied in combination compared to each agent alone. Similarly, synergistic interactions were observed when AgNPs were combined with amoxicillin, azithromycin, clarithromycin or linezolid in 30-40 % of the double combinations with no observed antagonistic interaction against the tested isolates. Combination of the AgNPs with vancomycin did not result in enhanced killing against all isolates tested. The antimicrobial activity against MRSA isolates was significantly enhanced in triple combinations of AgNPs, blue light and antibiotic, compared to treatments involving one or two agents. The bactericidal activities were highest when azithromycin or clarithromycin was included in the triple therapy compared to the other antibiotics tested. CONCLUSIONS: A new strategy can be used to combat serious infections caused by MRSA by combining AgNPs, blue light, and antibiotics. This triple therapy may include antibiotics, which have been proven to be ineffective against MRSA. The suggested approach would be useful to face the fast-growing drug-resistance with the slow development of new antimicrobial agents, and to preserve last resort antibiotics such as vancomycin.


Subject(s)
Anti-Bacterial Agents/pharmacology , Azithromycin/pharmacology , Clarithromycin/pharmacology , Methicillin-Resistant Staphylococcus aureus/drug effects , Methicillin-Resistant Staphylococcus aureus/radiation effects , Silver/pharmacology , Amoxicillin/pharmacology , Combined Modality Therapy/methods , Drug Combinations , Drug Synergism , Light , Linezolid/pharmacology , Metal Nanoparticles/chemistry , Methicillin-Resistant Staphylococcus aureus/growth & development , Microbial Sensitivity Tests , Phototherapy/methods , Vancomycin/pharmacology
6.
Int J Biol Macromol ; 91: 598-608, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27267572

ABSTRACT

Chitin and chitosan have been produced from the exoskeletons of crustacean shells such as shrimps. In this study, seventy bacterial isolates, isolated from soil, were tested for proteolytic enzymes production. The most efficient one, identified as Bacillus subtilis, was employed to extract chitin from shrimp shell waste (SSW). Following one-variable-at-a-time approach, the relevant factors affecting deproteinization (DP) and demineralization (DM) were sucrose concentration (10%, w/v), SSW concentration (5%, w/v), inoculum size (15%, v/v), and fermentation time (6days). These factors were optimized subsequently using Box-Behnken design and response surface methodology. Maximum DP (97.65%) and DM (82.94%) were predicted at sucrose concentration (5%), SSW concentration (12.5%), inoculum size (10%, containing 35×10(8) CFU/mL), and fermentation time (7days). The predicted optimum values were verified by additional experiment. The values of DP (96.0%) and DM (82.1%) obtained experimentally correlated to the predicted values which justify the authenticity of optimum points. Overall 1.3-fold increase in DP% and DM% was obtained compared with 75.27% and 63.50%, respectively, before optimization. Gamma-irradiation (35kGy) reduced deacetylation time of irradiated chitin by 4.5-fold compared with non-irradiated chitin. The molecular weight of chitosan was decreased from 1.9×10(6) (non-irradiated) to 3.7×10(4)g/mol (at 35kGy).


Subject(s)
Animal Shells/chemistry , Chitin/biosynthesis , Chitin/radiation effects , Decapoda/chemistry , Gamma Rays , Waste Products , Acetylation , Animals , Bacillus subtilis/metabolism , Dose-Response Relationship, Radiation , Fermentation/drug effects , Molecular Weight , Peptide Hydrolases/isolation & purification , Reproducibility of Results , Sucrose/pharmacology , Time Factors
7.
Int J Nanomedicine ; 11: 1749-58, 2016.
Article in English | MEDLINE | ID: mdl-27175075

ABSTRACT

Silver nanoparticles (AgNPs) have been used as potential antimicrobial agents against resistant pathogens. We investigated the possible therapeutic use of AgNPs in combination with visible blue light against a multidrug resistant clinical isolate of Pseudomonas aeruginosa in vitro and in vivo. The antibacterial activity of AgNPs against P. aeruginosa (1×10(5) colony forming unit/mL) was investigated at its minimal inhibitory concentration (MIC) and sub-MIC, alone and in combination with blue light at 460 nm and 250 mW for 2 hours. The effect of this combined therapy on the treated bacteria was then visualized using transmission electron microscope. The therapy was also assessed in the prevention of biofilm formation by P. aeruginosa on AgNP-impregnated gelatin biopolymer discs. Further, in vivo investigations were performed to evaluate the efficacy of the combined therapy to prevent burn-wound colonization and sepsis in mice and, finally, to treat a real infected horse with antibiotic-unresponsive chronic wound. The antimicrobial activity of AgNPs and visible blue light was significantly enhanced (P<0.001) when both agents were combined compared to each agent alone when AgNPs were tested at MIC, 1/2, or 1/4 MIC. Transmission electron microscope showed significant damage to the cells that were treated with the combined therapy compared to other cells that received either the AgNPs or blue light. In addition, the combined treatment significantly (P<0.001) inhibited biofilm formation by P. aeruginosa on gelatin discs compared to each agent individually. Finally, the combined therapy effectively treated a horse suffering from a chronic wound caused by mixed infection, where signs of improvement were observed after 1 week, and the wound completely healed after 4 weeks. To our knowledge, this combinatorial therapy has not been investigated before. It was proved efficient and promising in managing infections caused by multidrug resistant bacteria and could be used as an alternative to conventional antibiotic therapy.


Subject(s)
Anti-Bacterial Agents/pharmacology , Light , Metal Nanoparticles/chemistry , Pseudomonas aeruginosa/drug effects , Pseudomonas aeruginosa/radiation effects , Silver/pharmacology , Animals , Anti-Bacterial Agents/therapeutic use , Biofilms/drug effects , Biofilms/radiation effects , Disease Models, Animal , Horses , Metal Nanoparticles/administration & dosage , Mice , Microbial Sensitivity Tests , Pseudomonas Infections/drug therapy , Pseudomonas Infections/microbiology , Pseudomonas aeruginosa/ultrastructure , Sepsis/drug therapy , Sepsis/microbiology , Sepsis/prevention & control , Silver/therapeutic use
8.
Braz J Microbiol ; 44(2): 539-49, 2013.
Article in English | MEDLINE | ID: mdl-24294253

ABSTRACT

The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO) as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%). Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L) at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%). Semi-scale application (10 L working volume) increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform-hypochlorite dispersion extraction. Gas chromatography (GC) analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%). A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98-99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838.


Subject(s)
Oils/metabolism , Polyhydroxyalkanoates/metabolism , Pseudomonas fluorescens/metabolism , Bioreactors/microbiology , Carbon/metabolism , Chromatography, Gas , Cluster Analysis , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , Polyhydroxyalkanoates/chemistry , Pseudomonas fluorescens/classification , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/growth & development , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Waste Management
9.
Braz. j. microbiol ; 44(2): 539-549, 2013. ilus, graf, tab
Article in English | LILACS | ID: lil-688587

ABSTRACT

The present study aimed at developing a strategy to improve the volumetric production of PHAs by Pseudomonas fluorescens S48 using waste frying oil (WFO) as the sole carbon source. For this purpose, several cultivations were set up to steadily improve nutrients supply to attain high cell density and high biopolymer productivity. The production of PHAs was examined in a 14 L bioreactor as one-stage batch, two-stage batch, and high-cell-density fed-batch cultures. The highest value of polymer content in one-stage bioreactor was obtained after 60 h (33.7%). Whereas, the two-stage batch culture increased the polymer content to 50.1% after 54 h. High-cell-density (0.64 g/L) at continuous feeding rate 0.55 mL/l/h of WFO recorded the highest polymer content after 54 h (55.34%). Semi-scale application (10 L working volume) increased the polymer content in one-stage batch, two-stage batch and high cell density fed-batch cultures by about 12.3%, 5.8% and 11.3%, respectively, as compared with that obtained in 2 L fermentation culture. Six different methods for biopolymer extraction were done to investigate their efficiency for optimum polymer recovery. The maximum efficiency of solvent recovery of PHA was attained by chloroform-hypochlorite dispersion extraction. Gas chromatography (GC) analysis of biopolymer produced by Pseudomonas fluorescens S48 indicated that it solely composed of 3-hydrobutyric acid (98.7%). A bioplastic film was prepared from the obtained PHB. The isolate studied shares the same identical sequence, which is nearly the complete 16S rRNA gene. The identity of this sequence to the closest pseudomonads strains is about 98-99%. It was probably closely related to support another meaningful parsiomony analysis and construction of a phylogenetic tree. The isolate is so close to Egyptian strain named EG 639838.


Subject(s)
Oils/metabolism , Polyhydroxyalkanoates/metabolism , Pseudomonas fluorescens/metabolism , Bioreactors/microbiology , Chromatography, Gas , Cluster Analysis , Carbon/metabolism , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Phylogeny , Polyhydroxyalkanoates/chemistry , Pseudomonas fluorescens/classification , Pseudomonas fluorescens/genetics , Pseudomonas fluorescens/growth & development , /genetics , Sequence Analysis, DNA , Waste Management
10.
Photodiagnosis Photodyn Ther ; 9(4): 362-8, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23200019

ABSTRACT

BACKGROUND: Breast cancer is the most common cause of cancer deaths among women worldwide. Although chemotherapy is a standard method for the treatment of breast cancer, the photodynamic therapy (PDT) is a recent promising modality for cancer diagnosis and treatment. Its major advantages over chemotherapy are better selectivity of tumour tissue destruction and lack of severe local and systemic complications. This work is directed towards evaluation of the efficacy of Photodynamic therapy using chlorophyll derivative (CHL) as a photosensitizer in treatment of breast cancer. It also aims at investigation of the genetic safety of chlorophyll mediated PDT in comparison to the conventional chemotherapy. METHODS: Both methotrexate (MTX) and light activated chlorophyll derivative were used to target MCF-7 breast cancer cell line. Standard karyotyping and alkaline single cell microgel electrophoresis assay (Comet assay) were applied on normal human peripheral blood lymphocytes (HPL) in order to investigate the respective possible mutagenic and genotoxic side effects that might result from application of each therapeutic modality. RESULTS: Results obtained from this study showed that 50% of MCF-7 tumour cell death (LC(50)) was reached by using a concentration of chlorophyll derivative that is 138 times lower than MTX. Moreover, chlorophyll derivative exerted no genetic side effects as compared to MTX that resulted into several types of chromosomal breakages. CONCLUSIONS: Compared to MTX, light activated chlorophyll derivative proved to be a better candidate for breast cancer cell toxicity, referring to its higher efficacy at tumour cells killing, safety to normal cells and simple method of extraction.


Subject(s)
Antimetabolites, Antineoplastic/pharmacology , Breast Neoplasms/radiotherapy , Chlorophyllides/pharmacology , Low-Level Light Therapy/methods , Methotrexate/pharmacology , Photosensitizing Agents/therapeutic use , Breast Neoplasms/pathology , Cell Survival , Dose-Response Relationship, Drug , Female , Humans , Karyotyping , Lasers, Semiconductor , MCF-7 Cells , Mutagenicity Tests
11.
Biologicals ; 36(5): 303-7, 2008 Sep.
Article in English | MEDLINE | ID: mdl-18541439

ABSTRACT

Animal artificial insemination (AI) suffers from bacterial contamination of semen media which results in decreased success of the process of artificial insemination. It is difficult to treat the semen extender medium to reduce the bacterial growth in the presence of semen using the conventional techniques of bacterial inhibition. In the present work, a new optical method developed for bacterial growth inhibition in semen containing extender medium using diode laser (DL) and commercial cheap light emitting diode (LED) is presented. Certain wavelengths and exposure times suitable for the process of artificial insemination are found to be optimum at reducing bacterial growth with a minimum significant effect on the semen motility and viability.


Subject(s)
Insemination, Artificial/methods , Lasers, Semiconductor , Semen/microbiology , Buffers
SELECTION OF CITATIONS
SEARCH DETAIL
...