Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
World J Microbiol Biotechnol ; 40(7): 209, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38771414

ABSTRACT

Nanobodies are the smallest known antigen-binding molecules to date. Their small size, good tissue penetration, high stability and solubility, ease of expression, refolding ability, and negligible immunogenicity in the human body have granted them excellence over conventional antibodies. Those exceptional attributes of nanobodies make them promising candidates for various applications in biotechnology, medicine, protein engineering, structural biology, food, and agriculture. This review presents an overview of their structure, development methods, advantages, possible challenges, and applications with special emphasis on infectious diseases-related ones. A showcase of how nanobodies can be harnessed for applications including neutralization of viruses and combating antibiotic-resistant bacteria is detailed. Overall, the impact of nanobodies in vaccine design, rapid diagnostics, and targeted therapies, besides exploring their role in deciphering microbial structures and virulence mechanisms are highlighted. Indeed, nanobodies are reshaping the future of infectious disease prevention and treatment.


Subject(s)
Communicable Diseases , Single-Domain Antibodies , Single-Domain Antibodies/immunology , Humans , Communicable Diseases/immunology , Communicable Diseases/therapy , Animals , Biotechnology/methods , Protein Engineering/methods
2.
Food Res Int ; 172: 113178, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37689928

ABSTRACT

This study comprehensively characterized the metabolite profiles of six lettuce varieties and established the correlation between the elucidated profiles and their antivirulence effects. A total of 195 metabolites were annotated using LC-QTOF-MS/MS metabolomics assisted by molecular networking and integrated with chemometrics. Red varieties (red longifolia and lolla rosa) demonstrated higher chlorogenic and chicoric acids suggesting their antioxidant properties. In parallel, amino acids and disaccharides were enriched in romaine longifolia rationalizing its palatable taste and nutritional potential, while crispa, capitata, and lolla bionda presented a high ß-carboline alkaloid content. The antibacterial and antihemolytic potential of all varieties against methicillin-sensitive and methicillin-resistant Staphylococcus aureus was assessed and validated by prominent downregulation of α-hemolysin transcriptional levels in both strains. Moreover, correlation analysis revealed sesquiterpenes, ß-carboline alkaloids, amino acids, and oxy-fatty acids as the main bioactives. Results emphasize lettuce significance as a functional food and nutraceutical source, and highlight varieties naturally rich in antibacterial agents to adapt breeding programs.


Subject(s)
Anti-Bacterial Agents , Methicillin-Resistant Staphylococcus aureus , Anti-Bacterial Agents/pharmacology , Lactuca , Chemometrics , Tandem Mass Spectrometry , Plant Breeding , Amino Acids , Carbolines , Chromatography, Liquid
3.
Int J Mol Sci ; 24(13)2023 Jun 27.
Article in English | MEDLINE | ID: mdl-37445869

ABSTRACT

Polycyclic aromatic hydrocarbons, e.g., benzo[a]pyrene (BaP), are common dietary pollutants with potential carcinogenic activity, while polyphenols are potential chemopreventive antioxidants. Although several health benefits are attributed to polyphenol-rich pomegranate, little is known about its interaction with BaP. This study integrates histochemical, microbiomic, and metabolomic approaches to investigate the protective effects of pomegranate juice from BaP-induced pathologies. To this end, 48 Sprague-Dawley rats received, for four weeks, either pomegranate, BaP, both, or neither (n = 12 rats per group). Whereas histochemical examination of the colon indicated tissue damage marked by mucin depletion in BaP-fed animals, which was partially restored by administration of pomegranate juice, the fecal microbiome and metabolome retained their resilience, except for key changes related to pomegranate and BaP biotransformation. Meanwhile, dramatic microbiome restructuring and metabolome shift were observed as a consequence of the elapsed time (age factor). Additionally, the analysis allowed a thorough examination of fecal microbiome-metabolome associations, which delineated six microbiome clusters (marked by a differential abundance of Lactobacillaceae and Prevotellaceae, Rumincococcaceae, and Erysipelotrichaceae) and two major metabolome clusters (a sugar- and amino-acids-dominated metabotype vs. a cluster of fatty acids and hydrocarbons), with sugar alcohols maintaining a unique signature. In conclusion, using paired comparisons to minimize inter-individual animal variations allowed the dissection of temporal vs. treatment-derived variations. Microbiome-metabolome association clusters may be further exploited for metabotype prediction and gut-health biomarker discovery.


Subject(s)
Microbiota , Pomegranate , Rats , Animals , Rats, Sprague-Dawley , Metabolomics , Colon , Computational Biology , Pyrenes , Benzo(a)pyrene/toxicity
4.
Food Res Int ; 168: 112742, 2023 06.
Article in English | MEDLINE | ID: mdl-37120197

ABSTRACT

Plant extracts have recently received increased attention as alternative sources of antimicrobial agents in the fight against multidrug-resistant bacteria. Non-targeted metabolomics liquid chromatography-quadrupole time-of-flight tandem mass spectrometry, molecular networking, and chemometrics were used to evaluate the metabolic profiles of red and green leaves of two Brassica juncea (L.) varieties, var. integrifolia (IR and IG) and var. rugosa (RR and RG), as well as to establish a relationship between the elucidated chemical profiles and antivirulence activity. In total, 171 metabolites from different classes were annotated and principal component analysis revealed higher levels of phenolics and glucosinolates in var. integrifolia leaves and color discrimination, whereas fatty acids were enriched in var. rugosa, particularly trihydroxy octadecadienoic acid. All extracts demonstrated significant antibacterial activity against Staphylococcus aureus and Enterococcus faecalis, presenting the IR leaves the highest antihemolytic activity against S. aureus (99 % inhibition), followed by RR (84 %), IG (82 %), and RG (37 %) leaves. Antivirulence of IR leaves was further validated by reduction in alpha-hemolysin gene transcription (∼4-fold). Using various multivariate data analyses, compounds positively correlated to bioactivity, primarily phenolic compounds, glucosinolates, and isothiocyanates, were also identified.


Subject(s)
Mustard Plant , Tandem Mass Spectrometry , Chromatography, Liquid/methods , Chromatography, High Pressure Liquid/methods , Tandem Mass Spectrometry/methods , Staphylococcus aureus , Glucosinolates/pharmacology , Glucosinolates/analysis , Phenols/analysis , Vegetables
5.
J Adv Res ; 30: 159-170, 2021 05.
Article in English | MEDLINE | ID: mdl-34026293

ABSTRACT

Introduction: Toxin-antitoxin (TA) systems are widespread among bacteria, archaea and fungi. They are classified into six types (I-VI) and have recently been proposed as novel drug targets. Objectives: This study aimed to screen the pathogen Acinetobacter baumannii, known for its alarming antimicrobial resistance, for TA systems and identified a CptBA-like type IV TA, one of the least characterized systems. Methods: In silico methods included secondary structure prediction, comparative genomics, multiple sequence alignment, and phylogenetic analysis, while in vitro strategies included plasmid engineering and expression of the TA system in Escherichia coli BL21, growth measurement, and transcription analysis with quantitative reverse-transcription polymerase chain reaction. Results: Comparative genomics demonstrated the distribution of CptBA-like systems among Gram-negative bacteria, while phylogenetic analysis delineated two major groups, in each of which Acinetobacter spp. proteins clustered together. Sequence alignment indicated the conservation of cptA and cptB in 4,732 strains of A. baumannii in the same syntenic order. Using A. baumannii recombinant cptA and cptB, cloned under different promoters, confirmed their TA nature, as cptB expression was able to reverse growth inhibition by CptA in a dose-time dependent manner. Furthermore, transcriptional analysis of cptBA in clinical and standard A. baumannii strains demonstrated the downregulation of this system under oxidative and antibiotic stress. Conclusion: Combining in silico and in vitro studies confirmed the predicted TA nature of a cptBA-like system in A. baumannii . Transcriptional analysis suggests a possible role of cptBA in response to antibiotics and stress factors in A. baumannii, making it a promising drug target.


Subject(s)
Acinetobacter baumannii/genetics , Bacterial Toxins/genetics , Toxin-Antitoxin Systems/genetics , Anti-Bacterial Agents/metabolism , Computational Biology , Drug Resistance, Multiple, Bacterial/genetics , Escherichia coli/metabolism , Genes, Bacterial , Genome, Bacterial , Genomics , Phylogeny , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...