Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
JPEN J Parenter Enteral Nutr ; 48(4): 421-428, 2024 May.
Article in English | MEDLINE | ID: mdl-38522007

ABSTRACT

BACKGROUND: During critical illness skeletal muscle wasting occurs rapidly. Although beta-hydroxy-beta-methylbutyrate (HMB) is a potential treatment to attenuate this process, the plasma appearance and muscle concentration is uncertain. METHODS: This was an exploratory study nested within a blinded, parallel group, randomized clinical trial in which critically ill patients after trauma received enteral HMB (3 g daily) or placebo. Plasma samples were collected at 0, 60, and 180 min after study supplement administration on day 1. Needle biopsies of the vastus lateralis muscle were collected (baseline and day 7 of the HMB treatment intervention period). An external standard curve was used to calculate HMB concentrations in plasma and muscle. RESULTS: Data were available for 16 participants (male n = 12 (75%), median [interquartile range] age 50 [29-58] years) who received placebo and 18 participants (male n = 14 (78%), age 49 [34-55] years) who received HMB. Plasma HMB concentrations were similar at baseline but increased after HMB (T = 60 min: placebo 0.60 [0.44-1.31] µM; intervention 51.65 [22.76-64.72] µM). Paired muscle biopsies were collected from 11 participants (placebo n = 7, HMB n = 4). Muscle HMB concentrations were similar at baseline between groups (2.35 [2.17-2.95]; 2.07 [1.78-2.31] µM). For participants in the intervention group who had the repeat biopsy within 4 h of HMB administration, concentrations were greater (7.2 and 12.3 µM) than those who had the repeat biopsy >4 h after HMB (2.7 and 2.1 µM). CONCLUSION: In this exploratory study, enteral HMB administration increased plasma HMB availability. The small sample size limits interpretation of the muscle HMB findings.


Subject(s)
Critical Illness , Enteral Nutrition , Muscle, Skeletal , Valerates , Humans , Male , Middle Aged , Valerates/administration & dosage , Critical Illness/therapy , Adult , Enteral Nutrition/methods , Female , Wounds and Injuries/therapy , Wounds and Injuries/complications , Muscular Atrophy/etiology
2.
J Vis Exp ; (200)2023 10 13.
Article in English | MEDLINE | ID: mdl-37902324

ABSTRACT

Gas chromatography-mass spectrometry (GC-MS)-based approaches have proven to be powerful for elucidating the metabolic basis of the cnidarian-dinoflagellate symbiosis and how coral responds to stress (i.e., during temperature-induced bleaching). Steady-state metabolite profiling of the coral holobiont, which comprises the cnidarian host and its associated microbes (Symbiodiniaceae and other protists, bacteria, archaea, fungi, and viruses), has been successfully applied under ambient and stress conditions to characterize the holistic metabolic status of the coral. However, to answer questions surrounding the symbiotic interactions, it is necessary to analyze the metabolite profiles of the coral host and its algal symbionts independently, which can only be achieved by physical separation and isolation of the tissues, followed by independent extraction and analysis. While the application of metabolomics is relatively new to the coral field, the sustained efforts of research groups have resulted in the development of robust methods for analyzing metabolites in corals, including the separation of the coral host tissue and algal symbionts. This paper presents a step-by-step guide for holobiont separation and the extraction of metabolites for GC-MS analysis, including key optimization steps for consideration. We demonstrate how, once analyzed independently, the combined metabolite profile of the two fractions (coral and Symbiodiniaceae) is similar to the profile of the whole (holobiont), but by separating the tissues, we can also obtain key information about the metabolism of and interactions between the two partners that cannot be obtained from the whole alone.


Subject(s)
Anthozoa , Animals , Anthozoa/metabolism , Gas Chromatography-Mass Spectrometry , Metabolomics/methods , Bacteria , Temperature , Symbiosis , Coral Reefs
3.
Article in English | MEDLINE | ID: mdl-32567859

ABSTRACT

The analysis of 13C-labeled lipids by mass spectrometry is challenging due to the complexity from labeling the large number of carbon atoms in lipids. To further add to the complexity, different adducts can be produced during electrospray ionization and in-source fragmentation, which can create complex overlapping isotope patterns that can only be resolved using high-resolution mass spectrometry. Co-elution of lipids even after chromatographic separation also adds to the potential for overlapping mass spectra. Here, we describe a procedure that enables full 13C-labeled patterns to be resolved in complex microalgal lipid extracts as well a procedure that provides structural labeling information. Mass resolving powers of 240000 full width half-maximum (fwhm) and fast targeted MS/MS allowed the differentiation of isotopologues, adducts, and unresolved lipid species after chromatographic separation. This enabled the percentage of 13C enrichment to be calculated for each individual lipid species over a time series in the microalgal lipidome. The application of tandem mass spectrometry (MS/MS) also allowed the degree of labeling within the headgroup vs acyl chains to be determined, further adding to the detail of information collected. This information is particularly useful for studying lipid synthesis and remodeling processes and can be extended to other biological systems.

4.
Metabolites ; 6(4)2016 Nov 11.
Article in English | MEDLINE | ID: mdl-27845718

ABSTRACT

A simple method for tracing carbon fixation and lipid synthesis in microalgae was developed using a combination of solid-phase extraction (SPE) and negative ion chemical ionisation gas chromatography mass spectrometry (NCI-GC-MS). NCI-GC-MS is an extremely sensitive technique that can produce an unfragmented molecular ion making this technique particularly useful for stable isotope enrichment studies. Derivatisation of fatty acids using pentafluorobenzyl bromide (PFBBr) allows the coupling of the high separation efficiency of GC and the measurement of unfragmented molecular ions for each of the fatty acids by single quadrupole MS. The key is that isotope spectra can be measured without interference from co-eluting fatty acids or other molecules. Pre-fractionation of lipid extracts by SPE allows the measurement of 13C isotope incorporation into the three main lipid classes (phospholipids, glycolipids, neutral lipids) in microalgae thus allowing the study of complex lipid biochemistry using relatively straightforward analytical technology. The high selectivity of GC is necessary as it allows the collection of mass spectra for individual fatty acids, including cis/trans isomers, of the PFB-derivatised fatty acids. The combination of solid-phase extraction and GC-MS enables the accurate determination of 13C incorporation into each lipid pool. Three solvent extraction protocols that are commonly used in lipidomics were also evaluated and are described here with regard to extraction efficiencies for lipid analysis in microalgae.

SELECTION OF CITATIONS
SEARCH DETAIL
...