Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Trop Anim Health Prod ; 55(6): 387, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37910320

ABSTRACT

The study aims to evaluate dichromatic light with different intensities during incubation on pre- and post-hatch performance of Japanese quail. In completely randomized design, 600 quail hatching eggs were evenly divided into 4 treatments, 3 replicates, and 50 eggs in each. These eggs were provided with lighted incubation [dichromatic light; green-red (GR) with three different intensities 150, 250, and 350 lx] with lighting schedule (12L: 12D), and one treatment was the complete dark period during incubation and considered as control group. After hatch, 300 quail chicks were equally divided into four treatments (3 replicates and 25 chicks in each). Effects of GR light with different intensities during incubation were evaluated on hatching traits and post-hatch performance of Japanese quails. Regarding hatching traits, hatchability was better in all the treated groups (150, 250, and 350 lx of GR light during incubation) compared to complete dark. In terms of embryonic mortality, early embryonic mortality was lower in the 250 lx group, mid embryonic mortality in dark, and late embryonic mortality in the 150 lx group. Furthermore, an ideal chick spread and growth performance (weight gain, feed intake, feed conversion ratio, and liveability) was reported in 250 lx group compared to other treated groups. Serum chemistry values were higher in dark group compared to 150, 250, and 350 lx groups. Pre-slaughter weight was higher in 250 and 350 lx group than 150 lx and dark group, whereas carcass weight was better in 350 lx group compared to dark. In conclusion, stimulation of dichromatic light (green + red) at 250 lx to Japanese quail eggs positively influenced hatching traits and post-hatch growth performance of Japanese quail.


Subject(s)
Coturnix , Ovum , Animals , Chickens , Light , Lighting , Quail
2.
Trop Anim Health Prod ; 55(6): 379, 2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37880556

ABSTRACT

Present study evaluated the effect of lighted incubation on pre- and post-hatch performance of Japanese quail. In a completely randomized design, 1200 eggs were evenly divided into 4 treatments groups having six replicates (each tray was considered as replicate), 50 eggs each. Different dichromatic lights (Green + Red; GR, Green + Blue; GB, and Blue + Red; BR) of 250 lux were provided during incubation for 12 h daily and effects of these lights very evaluated on hatching results and post-hatch growth. After hatch, 600 quail chicks were divided into 4 treatments, 6 replicates, and 25 birds each. Regarding hatching traits, better hatchability was found in the GR group compared to GB, BR, and dark group; while early embryonic mortality was lower in BR, GB, and dark group than GR; mid embryonic mortality was lower in dark group and late embryonic mortality was noted in the GR group than those of other treatment groups. In addition, moisture loss during incubation was minimum in BR and dark groups; however, chick spread was better in the GR group. In terms of growth performance, weight gain was better in the GR group; feed intake in dark, feed conversion ratio in BR, and livability were better in BR and GR group. In morphometrics, keel and shank length were higher in all the colored groups (GB, BR, and GR) whereas body length, wing spread, shank circumference, drumstick length, and circumference were higher in the GR group. Regarding serum chemistry, glucose, albumin, and globulin levels were higher in the GR group. It was concluded that under the experimental conditions, GR light at the prenatal stage to Japanese quail eggs positively influenced hatching performance and post-hatch growth.


Subject(s)
Coturnix , Ovum , Animals , Chickens , Weight Gain
3.
Anim Biosci ; 35(2): 332-346, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34991217

ABSTRACT

Shortage of protein feed resources is the major challenge to the world farm animal industry. Insects are known as an alternative protein source for poultry. A wide range of insects are available for use in poultry diets. Insect larvae thrive in manure, and organic waste, and produce antimicrobial peptides to protect themselves from microbial infections, and additionally these peptides might also be functional in poultry feed. The feed containing antimicrobial peptides can improve the growth performance, nutrient digestibility, intestinal health, and immune function in poultry. Insect meal contains a higher amount of essential amino acids compared to conventional feedstuffs. Black soldier fly, mealworm, housefly, cricket/Grasshopper/Locust (Orthoptera), silkworm, and earthworm are the commonly used insect meals in broiler and laying hen diets. This paper summarizes the nutrient profiles of the insect meals and reviews their efficacy when included in poultry diets. Due to the differences in insect meal products, and breeds of poultry, inconsistent results were noticed among studies. The main challenge for proper utilization, and the promising prospect of insect meal in poultry diet are also addressed in the paper. To fully exploit insect meal as an alternative protein resource, and exert their functional effects, modes of action need to be understood. With the emergence of more accurate and reliable studies, insect meals will undoubtedly play more important role in poultry feed industry.

4.
Animals (Basel) ; 10(9)2020 Sep 18.
Article in English | MEDLINE | ID: mdl-32961912

ABSTRACT

The responses of broiler chickens to dietary protein reduction were investigated in the presence of glycine and cysteine inclusion at the marginal deficiency of sulfur-containing amino acids. A total of 432 broiler chickens were allotted to six dietary treatments; SP1 is standard protein diet with 100% total sulfur amino acids (TSAA), SP2 is standard protein diet with 85% TSAA, RP is reduced protein diet without glycine and cysteine supplementation, RPC is reduced protein diet with cysteine supplementation at 0.1%, and RPG is reduced protein diet with 1% glycine supplementation, while RPGC is reduced protein diet with 0.1% cysteine and 1% glycine supplementation. In this study, 4.5% protein is reduced in diets-thus, 17.5% CP (crude protein) for starter phase and 15.5% CP for the grower phase. Reduced protein diets contained 85% TSAA. Broiler chickens fed standard protein diet SP2 had superior bodyweight (BW) (p ≤ 0.05) in the starter and grower phase, average daily gain (ADG) (p ≤ 0.05) in the starter and entire feeding period, average daily feed intake (ADFI) (p ≤ 0.05) in the starter phase, and better feed conversion ratio (FCR) (p ≤ 0.05) in the starter, grower and entire feeding period; however, RPGC showed higher ADG (p ≤ 0.05) in the grower phase, and ADFI (p ≤ 0.05) in the grower and entire feeding period. RPC and RPG diet improved BW (p ≤ 0.05), ADG (p ≤ 0.05), ADFI (p ≤ 0.05), and better FCR (p ≤ 0.05) in starter, grower, entire feeding period compared to RP. The RPGC group had higher BW (p ≤ 0.05), ADG (p ≤ 0.05), ADFI (p ≤ 0.05) and better FCR (p ≤ 0.05) compared to the RPC group. Blood biochemical parameters showed that Broiler chickens fed on the SP2 diet had higher levels of total protein (TP) (p ≤ 0.05), albumin (ALB) (p ≤ 0.05), creatinine (CRE) (p ≤ 0.05), and aspartate aminotransferase (AST) (p ≤ 0.05) and, lower level of uric acid (UA) (p ≤ 0.05), blood urea nitrogen (BUN) (p ≤ 0.05), glucose (GLU) (p ≤ 0.05), and alanine aminotransferase (ALT) (p ≤ 0.05) in the starter phase; however, higher level of TP (p ≤ 0.05), GLU (p ≤ 0.05), CRE (p ≤ 0.05), and AST (p ≤ 0.05), and lower level of ALB (p ≤ 0.05), UA (p ≤ 0.05), and ALT (p ≤ 0.05) in the grower phase; RPGC had higher level of TP (p ≤ 0.05), UA (p ≤ 0.05), GLU (p ≤ 0.05), ALT (p ≤ 0.05) and AST (p ≤ 0.05), and lower level of ALB (p ≤ 0.05), BUN (p ≤ 0.05), and CRE (p ≤ 0.05) in the starter phase; however, in grower phase, RPGC had higher level of TP (p ≤ 0.05), and ALB (p ≤ 0.05), and lower level of UA (p ≤ 0.05), CRE (p ≤ 0.05), ALT (p ≤ 0.05), and AST (p ≤ 0.05). Free amino acids profile showed that broiler fed on standard protein diet SP2 had reduced the methionine (p ≤ 0.05) concentration; RPC increased the concentrations of taurine (p ≤ 0.05), phosphoethanolamine (p ≤ 0.05), threonine (p ≤ 0.05), valine (p ≤ 0.05), isoleucine (p ≤ 0.05), phenylalanine (p ≤ 0.05), ornithine (p ≤ 0.05), and lysine (p ≤ 0.05) and reduced the citrulline (p ≤ 0.05) concentration; RPG increased the concentration of glutamate (p ≤ 0.05), glycine (p ≤ 0.05), cysteine (p ≤ 0.05), and arginine (p ≤ 0.05), and decreased the concentration of tyrosine (p ≤ 0.05); and RPGC increased the concentration of serine (p ≤ 0.05) and reduced the concentration of hydroxyproline (p ≤ 0.05). Serum metabolites analysis showed that reduced protein downregulated the 54 metabolites; however, glycine fortification up-regulated the Benzamide, Pro-Ser, N-Carbamylglutamate, D-gluconate, and Gamma-Glutamylcysteine. Carcass quality showed that SP2 decreased the abdominal fat percentage (p ≤ 0.05). Nitrogen digestibility was higher by the diet RP (p ≤ 0.05). This study demonstrated that protein content could be reduced up to 4.5% with 1% glycine and 0.1% cysteine fortification in diet, which has the potential to inhibit the adverse effect of reduced protein and attain the standard growth performance.

5.
Animals (Basel) ; 10(2)2020 Jan 30.
Article in English | MEDLINE | ID: mdl-32019216

ABSTRACT

Yellow mealworm meal (MWM) as a protein feedstuff in the broiler diet was investigated based on the growth performance, hematological characteristics, carcass, and meat quality of broiler chicks. A total of 700 one-day-old Ross 308 male broiler chicks were assigned to five dietary MWM treatments containing 0%, 2%, 4%, and 8% dried MWM or 10.48% fresh mealworm (corresponding to 4% dried MWM). For each treatment, there were seven pens with 20 chicks each. The nutritional profile of dried MWM is comparable to all conventional protein feedstuffs. MWM significantly increased BW and ADG (linear and quadratic, p < 0.05), and FCR was best at 4% MWM inclusion level (quadratic, p < 0.10) for broiler chicks during the starter phase. The predicted MWM levels for optimal starter BW and ADG were 4.13% and 3.84%. Hematological characteristics of broiler chicks fed on the MWM diet did not differ or showed small change within the physiological range. A fresh 10.48% mealworm diet significantly reduced the blood LZM for the grower. Broiler Chicks fed on fresh 10.48% mealworm had a significantly reduced abdominal fat percentage compared to the 4% dried MWM counterparts. MWM did not significantly affect meat quality. Taken together, MWM inclusion in broiler diet is acceptable as a protein feedstuff, and a 4% level could stimulate early growth in the starter phase.

6.
J Anim Physiol Anim Nutr (Berl) ; 104(4): 1075-1084, 2020 Jul.
Article in English | MEDLINE | ID: mdl-31854139

ABSTRACT

A study was conducted to invesstigate the housefly maggot meal (HMM) as an alternative protein source to replace the soybean meal in broiler chick's diet. A total of 720 1-day-old male broiler chicks were divided into three groups and fed diets formulated with HMM to replace soybean meal at the rate of 0%, 4% and 8%. The study lasted for 42 days in two phases. Results showed that HMM addition did not markedly affect body weight, average daily body weight gain and average daily feed intake of the broiler chicks. Feed conversion ratio increased linearly (1-21 days) in starter or quadratically (22-42 days) in the grower phase. HMM non-significantly increased the feed intake and body weight during the grower phase. Slight changes were observed for decrease of blood biochemical indices in the platelets (day 21), and alkaline phosphatase and lysozyme (day 42), and increase for red blood cells, packed cell volume, total protein and uric acid on day 42; however, the fluctuations were within the physiological range. Non-significant effects were observed for carcass composition and meat quality, except that HMM numerically reduced the shear force of breast muscle (linear, p = .058). These results are the strong evidence that HMM can be used as an alternative protein source at 8% in broiler chick's diet without any adverse effect on chick's performance.


Subject(s)
Animal Feed/analysis , Body Composition/drug effects , Chickens/growth & development , Diet/veterinary , Houseflies , Meat/standards , Animal Nutritional Physiological Phenomena , Animals , Chickens/blood , Larva , Glycine max
SELECTION OF CITATIONS
SEARCH DETAIL
...