Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
IEEE J Biomed Health Inform ; 26(4): 1464-1471, 2022 04.
Article in English | MEDLINE | ID: mdl-34214045

ABSTRACT

Cervical cancer is one of the common cancers among women and it causes significant mortality in many developing countries. Diagnosis of cervical lesions is done using pap smear test or visual inspection using acetic acid (staining). Digital colposcopy, an inexpensive methodology, provides painless and efficient screening results. Therefore, automating cervical cancer screening using colposcopy images will be highly useful in saving many lives. Nowadays, many automation techniques using computer vision and machine learning in cervical screening gained attention, paving the way for diagnosing cervical cancer. However, most of the methods rely entirely on the annotation of cervical spotting and segmentation. This paper aims to introduce the Faster Small-Object Detection Neural Networks (FSOD-GAN) to address the cervical screening and diagnosis of cervical cancer and the type of cancer using digital colposcopy images. The proposed approach automatically detects the cervical spot using Faster Region-Based Convolutional Neural Network (FR-CNN) and performs the hierarchical multiclass classification of three types of cervical cancer lesions. Experimentation was done with colposcopy data collected from available open sources consisting of 1,993 patients with three cervical categories, and the proposed approach shows 99% accuracy in diagnosing the stages of cervical cancer.


Subject(s)
Uterine Cervical Neoplasms , Cervix Uteri/diagnostic imaging , Colposcopy , Delivery of Health Care , Early Detection of Cancer/methods , Female , Humans , Male , Papanicolaou Test , Pregnancy , Sensitivity and Specificity , Uterine Cervical Neoplasms/diagnostic imaging , Uterine Cervical Neoplasms/pathology , Vaginal Smears
2.
Inf Syst Front ; 23(6): 1369-1383, 2021.
Article in English | MEDLINE | ID: mdl-33753967

ABSTRACT

Infectious diseases are highly contagious due to rapid transmission and very challenging to diagnose in the early stage. Artificial Intelligence and Machine Learning now become a strategic weapon in assisting infectious disease prevention, rapid-response in diagnosis, surveillance, and management. In this paper, a bifold COVID_SCREENET architecture is introduced for providing COVID-19 screening solutions using Chest Radiography (CR) images. Transfer learning using nine pre-trained ImageNet models to extract the features of Normal, Pneumonia, and COVID-19 images is adapted in the first fold and classified using baseline Convolutional Neural Network (CNN). A Modified Stacked Ensemble Learning (MSEL) is proposed in the second fold by stacking the top five pre-trained models, and then the predictions resulted. Experimentation is carried out in two folds: In first fold, open-source samples are considered and in second fold 2216 real-time samples collected from Tamilnadu Government Hospitals, India, and the screening results for COVID data is 100% accurate in both the cases. The proposed approach is also validated and blind reviewed with the help of two radiologists at Thanjavur Medical College & Hospitals by collecting 2216 chest X-ray images between the month of April and May. Based on the reports, the measures are calculated for COVID_SCREENET and it showed 100% accuracy in performing multi-class classification.

SELECTION OF CITATIONS
SEARCH DETAIL
...