Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 78
Filter
Add more filters










Publication year range
1.
Article in English | MEDLINE | ID: mdl-38913653

ABSTRACT

The removal of toxic heavy metal ions from water resources is crucial for environmental protection and public health. In this study, we address this challenge by developing a surface functionalization technique for the selective adsorption of these contaminants. Our approach involves atomic layer deposition (ALD) followed by vapor-phase silanization of porous substrates. We utilized porous silica gel powder (∼100 µm particles, 89 m2/g surface area, ∼30 nm pores) as an initial substrate. This powder was first coated with ∼0.5 nm ALD Al2O3, followed by vapor-phase grafting of a thiol-functional silane. The modified powder, particularly in acidic conditions (pH = 4), showed high selectivity in adsorbing Cd(II), As(V), Pb(II), Hg(II), and Cu(II) heavy metal ions in mixed ion solutions over common benign ions (e.g., Na, K, Ca, and Mg). Langmuir adsorption isotherms and breakthrough adsorption studies were conducted to assess heavy metal binding affinity and revealed the order of Cd(II) < Pb(II) < Cu(II) < As(V) < Hg(II), with a significantly higher affinity for As(V) and Hg(II) ions. Time-dependent uptake studies demonstrated rapid removal of heavy metal ions from aqueous environments, with Hg(II) exhibiting the fastest adsorption kinetics on thiol-modified surfaces. These findings highlight the potential of ALD and vapor-phase silanization to create effective adsorbents for the targeted removal of hazardous contaminants from water.

2.
J Phys Chem C Nanomater Interfaces ; 128(15): 6346-6356, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38655058

ABSTRACT

New strategies to synthesize nanometer-scale silicon dioxide (SiO2) patterns have drawn much attention in applications such as microelectronic and optoelectronic devices, membranes, and sensors, as we are approaching device dimensions shrinking below 10 nm. In this regard, sequential infiltration synthesis (SIS), a two-step gas-phase molecular assembly process that enables localized inorganic material growth in the targeted reactive domains of polymers, is an attractive process. In this work, we performed in situ Fourier transform infrared spectroscopy (FTIR) measurements during SiO2 SIS to investigate the reaction mechanism of trimethylaluminum (TMA) and tri(tert-pentoxy) silanol (TPS) precursors with polymers having ester functional groups (poly(methyl methacrylate) (PMMA), poly(ethyl methacrylate) (PEMA), polycaprolactone (PCL), and poly(t-butyl methacrylate) (PBMA)), for the purpose of growing patterned nanomaterials. The FTIR results show that for PMMA and PEMA, a lower percentage of functional groups participated in the reactions and formed weak and unstable complexes. In contrast, almost all functional groups in PCL and PBMA participated in the reactions and showed stable and irreversible interactions with TMA. We discovered that the amount of SiO2 formed is not directly correlated with the number of interacting functional groups. These insights into the SiO2 SIS mechanism will enable nanopatterning of SiO2 for low-dimensional applications.

3.
Sci Bull (Beijing) ; 69(2): 218-226, 2024 Jan 30.
Article in English | MEDLINE | ID: mdl-38087739

ABSTRACT

Atomic layer deposition (ALD) offers unique capabilities to fabricate atomically engineered porous materials with precise pore tuning and multi-functionalization for diverse applications like advanced membrane separations towards sustainable energy-water systems. However, current ALD technique is inhibited on most non-polar polymeric membranes due to lack of accessible nucleation sites. Here, we report a facile method to efficiently promote ALD coating on hydrophobic surface of polymeric membranes via novel protein activation/sensitization. As a proof of concept, TiO2 ALD-coated membranes activated by bovine serum albumin exhibit remarkable superhydrophilicity, ultralow underwater crude oil adhesion, and robust tolerance to rigorous environments including acid, alkali, saline, and ethanol. Most importantly, excellent cyclable crude oil-in-water emulsion separation performance can be achieved. The mechanism for activation/sensitization is rooted in reactivity for a particular set of amino acids. Furthermore, the universality of protein-sensitized ALD is demonstrated using common egg white, promising numerous potential usages in biomedical engineering, environmental remediation, low-carbon manufacturing, catalysis, and beyond.

4.
J Phys Chem C Nanomater Interfaces ; 127(48): 23199-23211, 2023 Dec 07.
Article in English | MEDLINE | ID: mdl-38090141

ABSTRACT

Electrochemical interfaces still have remaining mysteries surrounding the interfacial region of the electrical double layer, despite being prevalent throughout the energy and water remediation industries. The electrical double layer is where many important dynamic processes such as catalysis and electron transfer occur. The goal of this work is to study the electrical double layer with two-dimensional infrared (2D IR) spectroscopy to experimentally access the details of the structural dynamics of this complex environment. However, there are several experimental challenges to applying 2D IR spectroscopy to this application, such as assuring the surface specificity of the spectrum, optimizing the signal strength while minimizing spectral distortions from dispersion and Fano line shapes, and selecting electrode materials that are both sufficiently IR compatible and conductive. Here we will discuss various considerations when designing 2D IR experiments of electrode interfaces utilizing several substrates and experimental configurations and demonstrate a robust method for 2D IR experiments of electrode interfaces under applied potential that combines nonconducting Si ATR wafers with conductive ITO and thin nanostructured films of plasmonically active Au functionalized with 3-mercapto-2-butanone (MCB). We show that layered electrodes on thin Si ATR wafers with MCB are sensitive to applied potential and that the distortions in the linear and 2D IR spectra are heavily dependent on the morphology of the Au surface.

5.
J Phys Chem Lett ; 14(49): 11092-11099, 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38051916

ABSTRACT

Two-dimensional infrared spectroscopy of vibrational probes at an electrode surface shows promise for studying the structural dynamics at an active electrochemical interface. This interface is a complex environment where the solution structures in response to the applied potential. A strategy for achieving the necessary monolayer sensitivity is to use a plasmonically active electrode, which enhances the electromagnetic fields that produce the spectroscopic response. Here, we show how the coupling between the plasmon and the vibrations of the molecular monolayer impacts the FTIR and 2D IR spectroscopy, with an emphasis on the electrochemical potential difference spectra. We show how mixing between the vibrational and plasmonic states gives rise to the distortions that are observed in these measurements. This provides an important step toward 2D IR measurements of vibrational probes at the electrochemical interface as a tool for probing the structural dynamics in the double layer.

6.
Nat Commun ; 14(1): 7255, 2023 Nov 09.
Article in English | MEDLINE | ID: mdl-37945562

ABSTRACT

Ceramic membranes are a promising alternative to polymeric membranes for selective separations, given their ability to operate under harsh chemical conditions. However, current fabrication technologies fail to construct ceramic membranes suitable for selective molecular separations. Herein, we demonstrate a molecular-level design of ceramic thin-film composite membranes with tunable subnanometer pores for precise molecular sieving. Through burning off the distributed carbonaceous species of varied dimensions within hybrid aluminum oxide films, we created membranes with tunable molecular sieving. Specifically, the membranes created with methanol showed exceptional selectivity toward monovalent and divalent salts. We attribute this observed selectivity to the dehydration of the large divalent ions within the subnanometer pores. As a comparison, smaller monovalent ions can rapidly permeate with an intact hydration shell. Lastly, the flux of neutral solutes through each fabricated aluminum oxide membrane was measured for the demonstration of tunable separation capability. Overall, our work provides the scientific basis for the design of ceramic membranes with subnanometer pores for molecular sieving using atomic layer deposition.

7.
Article in English | MEDLINE | ID: mdl-38033202

ABSTRACT

Membranes incorporating two-dimensional (2D) materials have shown great potential for water purification and energy storage and conversion applications. Their ordered interlayer galleries can be modified for their tunable chemical and structural properties. Montmorillonite (MMT) is an earth-abundant phyllosilicate mineral that can be exfoliated into 2D flakes and reassembled into membranes. However, the poor water stability and random interlayer spacing of MMT caused by weak interlamellar interactions pose challenges for practical membrane applications. Herein, we demonstrate a facile approach to fabricating 2D MMT membranes with alkanediamines as cross-linkers. The incorporation of diamine molecules of different lengths enables controllable interlayer spacing and strengthens interlamellar connections, leading to tunable ion transport properties and boosted membrane stability in aqueous environments.

8.
Adv Mater ; 35(21): e2300673, 2023 May.
Article in English | MEDLINE | ID: mdl-36929566

ABSTRACT

Sulfide-based solid-state electrolytes (SSEs) exhibit many tantalizing properties including high ionic conductivity and favorable mechanical properties for next-generation solid-state batteries. Widespread adoption of these materials is hindered by their intrinsic instability under ambient conditions, which makes them difficult to process at scale, and instability at the Li||SSE and cathode||SSE interfaces, which limits cell performance and lifetime. Atomic layer deposition is leveraged to grow thin Al2 O3 coatings on Li6 PS5 Cl powders to address both issues simultaneously. These coatings can be directly grown onto Li6 PS5 Cl particles with negligible chemical modification of the underlying material and enable exposure of powders to pure and H2 O-saturated oxygen environments for ≥4 h with minimal reactivity, compared with significant degradation of the uncoated powder. Pellets fabricated from coated powders exhibit ionic conductivities up to 2× higher than those made from uncoated material, with a simultaneous decrease in electronic conductivity and significant suppression of chemical reactivity at the Li-SSE interface. These benefits result in significantly improved room temperature cycle life at high capacity and current density. It is hypothesized that this enhanced performance derives from improved intergranular properties and improved Li metal adhesion. This work points to a completely new framework for designing active, stable, and scalable materials for next-generation solid-state batteries.

9.
Chem Mater ; 35(3): 927-936, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36818590

ABSTRACT

Two-dimensional (2D) layered materials offer unique properties that make them attractive for continued scaling in electronic and optoelectronic device applications. Successful integration of 2D materials into semiconductor manufacturing requires high-volume and high-precision processes for deposition and etching. Several promising large-scale deposition approaches have been reported for a range of 2D materials, but fewer studies have reported removal processes. Thermal atomic layer etching (ALE) is a scalable processing technique that offers precise control over isotropic material removal. In this work, we report a thermal ALE process for molybdenum disulfide (MoS2). We show that MoF6 can be used as a fluorination source, which, when combined with alternating exposures of H2O, etches both amorphous and crystalline MoS2 films deposited by atomic layer deposition. To characterize the ALE process and understand the etching reaction mechanism, in situ quartz crystal microbalance (QCM), Fourier transform infrared (FTIR), and quadrupole mass spectrometry (QMS) experiments were performed. From temperature-dependent in situ QCM experiments, the mass change per cycle was -5.7 ng/cm2 at 150 °C and reached -270.6 ng/cm2 at 300 °C, nearly 50× greater. The temperature dependence followed Arrhenius behavior with an activation energy of 13 ± 1 kcal/mol. At 200 °C, QCM revealed a mass gain following exposure to MoF6 and a net mass loss after exposure to H2O. FTIR revealed the consumption of Mo-O species and formation of Mo-F and MoF x =O species following exposures of MoF6 and the reverse behavior following H2O exposures. QMS measurements, combined with thermodynamic calculations, supported the removal of Mo and S through the formation of volatile MoF2O2 and H2S byproducts. The proposed etching mechanism involves a two-stage oxidation of Mo through the ALE half-reactions. Etch rates of 0.5 Å/cycle for amorphous films and 0.2 Å/cycle for annealed films were measured by ex situ ellipsometry, X-ray reflectivity, and transmission electron microscopy. Precisely etching amorphous films and subsequently annealing them yielded crystalline, few-layer MoS2 thin films. This thermal MoS2 ALE process provides a new mechanism for fluorination-based ALE and offers a low-temperature approach for integrating amorphous and crystalline 2D MoS2 films into high-volume device manufacturing with tight thermal budgets.

10.
ACS Nano ; 16(11): 18266-18273, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36318607

ABSTRACT

Membranes integrating two-dimensional (2D) materials have emerged as a category with unusual ion transport and potentially useful separation applications in both aqueous and nonaqueous systems. The interlayer galleries in these membranes drive separation and selectivity, with specific transport properties determined by the chemical and structural modifications within the inherently different interlayers. Here we report an approach to tuning interlayer spacing with a single source material─exfoliated and restacked vermiculite with alkanediamine cross-linkers─to both control the gallery height and enhance the membrane stability. The as-prepared cross-linked 2D vermiculite membranes exhibit ion diffusivities tuned by the length of the selected diamine molecule. The 2D nanochannels in these stabilized vermiculite membranes enable a systematic study of confined ionic transport.

11.
ACS Appl Mater Interfaces ; 14(38): 43171-43179, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36171685

ABSTRACT

Solid acid catalysts, including zeolites and amorphous silica-aluminas (ASAs), are industrially important materials widely used in the fuel and petrochemical industries. The versatility of zeolites is due to the Brønsted acidity of the bridging hydroxyl and shape selectivity that can be tailored during and after synthesis. This is in contrast to amorphous silica-alumina, where tailoring acidity is a major challenge as the Brønsted acid structure in ASA is still debated. In both cases, however, the pore size and acidity cannot be tuned independently, and this is particularly limiting in the application of biomass conversion, where zeolite pores are too small for the molecules of interest. Herein, we present a method using atomic layer deposition (ALD) to prepare thin films of solid acid materials where the ratio of Brønsted to Lewis acid sites can be tuned precisely. This capability, combined with the sub-nm pore size control afforded by ALD yields a powerful and flexible method for synthesizing solid acid catalysts inside virtually any mesoporous host. We demonstrate the utility of these materials in two acid-catalyzed reactions relevant to biomass conversion: (1) Meerwein-Ponndorf-Verley-Oppenauer (MPVO) reaction and dehydration of fructose and (2) cascade reaction of glucose to 5-hydroxymethylfurfural. Finally, we propose a plausible structure for the Brønsted acid sites in our materials based on infrared spectroscopy and solid-state nuclear magnetic resonance measurements and density functional theory calculations and argue that this same structure might apply to conventional ASAs as well.

12.
J Phys Chem Lett ; : 5304-5309, 2022 Jun 08.
Article in English | MEDLINE | ID: mdl-35675154

ABSTRACT

Supported molybdenum oxide (MoOx) plays an important role in catalytic transformations from alcohol dehydrogenation to transesterification. During these reactions, molybdenum and oxygen surface species undergo structural and chemical changes. A detailed, chemical-state specific, atomic-scale structural analysis of the catalyst under redox conditions is important for improving catalytic properties. In this study, a monolayer of Mo grown on α-TiO2(110) by atomic-layer deposition is analyzed by X-ray standing wave (XSW) excited X-ray photoelectron spectroscopy (XPS). The chemical shifts for Mo 2p3/2 and O 1s peaks are used to distinguish Mo6+ from Mo4+ and surface O from bulk O. Excitation of XPS by XSW allows pinpointing the location of these surface species relative to the underlying substrate lattice. Measured 3D composite atomic density maps for the oxidized and reduced interfaces compare well with our density functional theory models and collectively create a unique view of the redox-driven dynamics for this complex catalytic structure.

13.
ACS Nano ; 16(4): 5384-5392, 2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35357130

ABSTRACT

In-plane tungsten oxide nanostructures, including hexagonally patterned cylinders and holes in a matrix, were fabricated via sequential infiltration synthesis (SIS) on self-assembled block copolymer templates. Using the tailored morphology and porosity of these model electrodes with in situ grazing incidence small-angle X-ray scattering, the intrinsic structural change of nanoscale active materials during the conversion reaction of WO3 + 6Li ↔ W + 3Li2O was investigated at controlled electrochemical conditions. Reversible electrode volume expansion and contraction was observed during lithiation and delithiation cycles, respectively. The potential where the electrode's thickness expansion started was ∼1.6 V, which is close to the thermodynamically expected one for the conversion reaction of WO3 with lithium (1.65 V). The temporal evolution of the electrode volume at constant electrode potentials revealed high overpotential for bulk lithiation and slow conversion reaction kinetics, despite the tailored porosity of the SIS electrodes. Oxide cylinders showed a smaller overall electrode thickness change, likely due to unconstrained lateral volume change, as compared to a matrix with holes. On the other hand, better connectivity and guided volume change of the latter electrode morphology provided improved cycling stability. In addition, heterogeneity in an electrode, from internal pores and density gradients, was found to aggravate the fragmentation of the electrode during the conversion reaction. Insights into oxide conversion reaction kinetics and the relationship between electrode mesostructure and cycling behavior obtained from this study can help guide the more rational design of conversion electrodes for high-performing batteries.

14.
J Am Chem Soc ; 143(43): 17937-17941, 2021 Nov 03.
Article in English | MEDLINE | ID: mdl-34672550

ABSTRACT

During redox reactions, oxide-supported catalytic systems undergo structural and chemical changes. Improving subsequent catalytic properties requires an understanding of the atomic-scale structure with chemical state specificity under reaction conditions. For the case of 1/2 monolayer vanadia on α-TiO2(110), we use X-ray standing wave (XSW) excited X-ray photoelectron spectroscopy to follow the redox induced atomic positional and chemical state changes of this interface. While the resulting XSW 3D composite atomic maps include the Ti and O substrate atoms and V surface atoms, our focus in this report is on the previously unseen surface oxygen species with comparison to density functional theory predictions.

15.
Langmuir ; 37(39): 11618-11624, 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34554756

ABSTRACT

Membranes are among the most promising technologies for energy-efficient and highly selective separations, and the surface-charge property of membranes plays a critical role in their broad applications. Atomic layer deposition (ALD) can deposit materials uniformly and with high precision and controllability on arbitrarily complex and large substrates, which renders it a promising method to tune the electrostatics of water/solid interfaces. However, a systematic study of surface-charge properties of ALD-grown films in aqueous environments is still lacking. In this work, 17 ALD-grown metal-oxide films are synthesized, and a comprehensive study of their water stability, wetting properties, and surface-charge properties is provided. This work represents a resource guide for researchers and ultimately for materials and process engineers, seeking to tailor interfacial charge properties of membranes and other porous water treatment components.

16.
Chem Rev ; 121(15): 9450-9501, 2021 08 11.
Article in English | MEDLINE | ID: mdl-34213328

ABSTRACT

The structure, chemistry, and charge of interfaces between materials and aqueous fluids play a central role in determining properties and performance of numerous water systems. Sensors, membranes, sorbents, and heterogeneous catalysts almost uniformly rely on specific interactions between their surfaces and components dissolved or suspended in the water-and often the water molecules themselves-to detect and mitigate contaminants. Deleterious processes in these systems such as fouling, scaling (inorganic deposits), and corrosion are also governed by interfacial phenomena. Despite the importance of these interfaces, much remains to be learned about their multiscale interactions. Developing a deeper understanding of the molecular- and mesoscale phenomena at water/solid interfaces will be essential to driving innovation to address grand challenges in supplying sufficient fit-for-purpose water in the future. In this Review, we examine the current state of knowledge surrounding adsorption, reactivity, and transport in several key classes of water/solid interfaces, drawing on a synergistic combination of theory, simulation, and experiments, and provide an outlook for prioritizing strategic research directions.

17.
ACS Appl Mater Interfaces ; 13(14): 17022-17033, 2021 Apr 14.
Article in English | MEDLINE | ID: mdl-33819012

ABSTRACT

Atomic layer deposition (ALD) is a highly controllable thin film synthesis approach with applications in computing, energy, and separations. The flexibility of ALD means that it can access a massive chemical catalogue; however, this chemical and process diversity results in significant challenges in determining processing parameters that result in stable and uniform film growth with minimal precursor consumption. In situ measurements of the ALD growth per cycle (GPC) can accelerate process development but it still requires expert intuition and time-consuming trial and error to identify acceptable processing parameters. This procedure is made more difficult by the presence of experimental noise in the GPC values and the complexity of ALD surface chemistries. A need exists for efficient optimization approaches capable of autonomously determining processing conditions resulting in optimal ALD film growth. In this work, we present the development of three optimization strategies and compare their performance in optimizing four simulated ALD processes. Furthermore, the effect of noise in the GPC measurements on optimization convergence is studied.

18.
Dalton Trans ; 49(38): 13233-13242, 2020 Oct 06.
Article in English | MEDLINE | ID: mdl-32840540

ABSTRACT

Functional coatings based on alkali metals have become increasingly attractive in the current shift towards sustainable technologies. While lithium-based compounds have a natural impact on batteries, other alkali metal compounds are important as replacements for toxic materials in a range of electronic devices. This is especially true for potassium, being a major component in e.g. KxNa1-xNbO3 (KNN) and KTaxNb1-xO3 (KTN), with hope to replace Pb(ZrxTi1-x)O3 (PZT) in piezo-/ferroelectric and electrooptic devices. ALD facilitates functional conformal coatings at deposition temperatures far below what is reported using other techniques and with excellent compositional control. The ALD growth of potassium-containing films using KOtBu has, however, been unpredictable. Untraditional response to the pulse composition and precursor dose, severe reproducibility issues, and very high growth per cycle are some of the puzzling features of these processes. In this article, we shed light on the growth behavior of KOtBu in ALD by in situ quartz crystal microbalance and Fourier transform infrared spectroscopy studies. We study the precursor's behavior in the technologically interesting KNbO3-process, showing how the potassium precursor strongly affects the growth of other cation precursors. We show that the strong hygroscopic nature of the intermediary potassium species has far-reaching implications throughout the growth. This helps not only to enhance the understanding of alkali metal containing compounds' growth in ALD, but also to provide the means to control the growth of novel sustainable technological materials.

19.
ACS Appl Mater Interfaces ; 12(20): 22804-22814, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32309922

ABSTRACT

Atomic layer deposition (ALD) is a well-established technique for depositing nanoscale coatings with pristine control of film thickness and composition. The trimethylaluminum (TMA) and water (H2O) ALD chemistry is inarguably the most widely used and yet to date, we have little information about the atomic-scale structure of the amorphous aluminum oxide (AlOx) formed by this chemistry. This lack of understanding hinders our ability to establish process-structure-property relationships and ultimately limits technological advancements employing AlOx made via ALD. In this work, we employ synchrotron high-energy X-ray diffraction (HE-XRD) coupled with pair distribution function (PDF) analysis to characterize the atomic structure of amorphous AlOx ALD coatings. We combine ex situ and in operando HE-XRD measurements on ALD AlOx and fit these experimental data using stochastic structural modeling to reveal variations in the Al-O bond length, Al and O coordination environment, and extent of Al vacancies as a function of growth conditions. In particular, the local atomic structure of ALD AlOx is found to change with the substrate and number of ALD cycles. The observed trends are consistent with the formation of bulk Al2O3 surrounded by an O-rich surface layer. We deconvolute these data to reveal atomic-scale structural information for both the bulk and surface phases. Overall, this work demonstrates the usefulness of HE-XRD and PDF analysis in improving our understanding of the structure of amorphous ALD thin films and provides a pathway to evaluate how process changes impact the structure and properties of ALD films.

20.
J Chem Phys ; 152(2): 024710, 2020 Jan 14.
Article in English | MEDLINE | ID: mdl-31941318

ABSTRACT

Pt-Pd bimetallic nanoparticles were synthesized on TiO2 support on the planar substrate as well as on high surface area SiO2 gel by atomic layer deposition to identify the catalytic performance improvement after the formation of Pt-Pd bimetallic nanoparticles by surface analysis techniques. From X-ray absorption near edge spectra of Pt-Pd bimetallic nanoparticles, d-orbital hybridization between Pt 5d and Pd 4d was observed, which is responsible for charge transfer from Pt to Pd. Moreover, it was found from the in situ grazing incidence X-ray absorption spectroscopy study that Pt-Pd nanoparticles have a Pd shell/Pt core structure with CO adsorption. Resonant photoemission spectroscopy on Pt-Pd bimetallic nanoparticles showed that Pd resonant intensity is enhanced compared to that of Pd monometallic nanoparticles because of d-orbital hybridization and electronic states broadening of Pt and Pd compared monometallic catalysts, which results in catalytic performance improvement.

SELECTION OF CITATIONS
SEARCH DETAIL
...