Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Genes Genet Syst ; 82(5): 403-8, 2007 Oct.
Article in English | MEDLINE | ID: mdl-17991995

ABSTRACT

Alien chromosome addition lines are useful genetic material for studying the effect of an individual chromosome in the same genetic background. However, addition lines are sometimes unstable and tend to lose the alien chromosome in subsequent generations. In this study, we report preferential removal of chromosome 1D rather than the alien chromosome from homoeologous group-1 addition lines. The Agropyron intermedium chromosome 1Agi (1E) addition line, created in the background of 'Vilmorin 27', showed loss of a part of chromosome 1D, thereby losing its HMW glutenin locus. Even in the case of Aegilops longissima and Ae. peregrina, the genomes of which are closer to the B genome than D genome, chromosome 1D was lost from chromosome 1Sl and 1Sv addition lines in cv. 'Chinese Spring' rather than chromosome 1B during transfer from one generation to another. A similar observation was also observed in the case of a chromosome 1E disomic addition line of Ag. elongatum and alloplasmic common wheat line with Ag. intermedium ssp. trichophorum cytoplasm. The reason for this strange observation is thought to lie in the history of wheat evolution, the size of chromosome 1D compared to 1A and 1B, or differing pollen competition abilities.


Subject(s)
Chromosome Deletion , Chromosomes, Plant/metabolism , Polyploidy , Triticum/genetics , Agropyron/genetics , Crosses, Genetic , Genome, Plant , Glutens/genetics , Glutens/metabolism , In Situ Hybridization, Fluorescence , Plant Proteins/genetics
2.
Theor Appl Genet ; 114(7): 1141-50, 2007 May.
Article in English | MEDLINE | ID: mdl-17287973

ABSTRACT

A monosomic addition line of Aegilops tauschii chromosome 1D in Triticum durum cv. PBW114 was produced in 1990. This line was self-pollinated and maintained for several generations while following the presence of chromosome 1D carrying the gene for red glume color. Cytological analysis indicated that two of the three derivative lines had substitution of chromosome 1D for 1A and another had substitution of chromosome 1D for 1B. One of these lines carried a pair of small chromosomes in addition to the 1D chromosome. Sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) of the derived lines showed the presence of high-molecular-weight (HMW) glutenin encoded by the Glu-D1 locus. The small chromosome found in one of the lines had nearly regular pairing and transmission to daughter nuclei. Fluorescent in situ hybridization (FISH) and analysis of molecular markers indicated that the small chromosome was derived from the short arm of chromosome 1A and carried the Glu-A3 locus. Microsatellite mapping based on the deletion bin map revealed that the small chromosome had terminal deletions on both the terminal and centromeric sides. The line with the small chromosome showed improvement of the sodium dodecyl sulfate (SDS)-sedimentation value as compared to parent durum. However, the increase in SDS-sedimentation value was more significant in the substitution line of chromosome 1D for 1A without the small chromosome. These facts suggest a negative effect of the Glu-A3 locus on dough strength. The sequence of the Glu-D1 locus from these lines showed that the HMW glutenin subunits were Ae. tauschii specific 2(t) + T2, which were previously found to be associated with poor rheological properties and bread loaf volume in synthetic hexaploid wheat by other workers. Thus, the significant improvement in the SDS-sedimentation value of the substitution line of 1D for 1A suggests that the absence of the negative effect of chromosome 1A on quality is more important than the presence of Glu-D1 of Ae. tauschii.


Subject(s)
Chromosomes/ultrastructure , Genes, Plant , Triticum/genetics , Bread , Chromosome Mapping , Electrophoresis, Polyacrylamide Gel , In Situ Hybridization, Fluorescence , Models, Genetic , Molecular Weight , Plants, Genetically Modified , Species Specificity
SELECTION OF CITATIONS
SEARCH DETAIL
...