Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 37
Filter
Add more filters










Publication year range
1.
Int J Biol Macromol ; 107(Pt A): 59-69, 2018 Feb.
Article in English | MEDLINE | ID: mdl-28860055

ABSTRACT

The future of this study was to prepare a natural pesticide which will not harm the environment and yet control pests. Neem gum nano formulation (NGNF), a novel biopesticide prepared from the Neem gum extract (Azadirachta indica) (NGE) was evaluated for its antifeedant, larvicidal and pupicidal activities against Helicoverpa armigera (Hub.) and Spodoptera litura (Fab.) at 100ppm. The NGNF showed significant (100%) antifeedant, larvicidal and pupicidal activities against H. armigera and S. litura. The LC50 values of 10.20, 12.49 and LC90 values of 32.68, 36.68ppm on H. armigera and S. litura, respectively at 100ppm. The NGNF treatments showed differences in the activities of detoxifying enzymes, carboxylesterases, glucosidases and glutathione S-transferases in the larval gut. Earthworm toxicity illustrated that 6.25ppm of chemical insecticides (cypermethrin) varied widely in their contact toxicities compared to 100ppm of NGNF and control in both contact filter paper and artificial soil test. The NGNF were characterized and confirmed by FTIR, XRD, SEM and EDX analysis. Ten compounds were identified from the Neem gum extract (NGE) by Gas Chromatography-Mass Spectrometry (GC-MS) analysis. The major compounds were fatty acids like Hexadecanoic acid, oleic acid, and ricinoleic acid. NGNF could be used as an agent to prepare novel bio-pesticides formulations.


Subject(s)
Azadirachta/chemistry , Biological Control Agents/chemistry , Nanocomposites/chemistry , Plant Gums/chemistry , Animals , Biological Control Agents/pharmacology , Larva/drug effects , Larva/pathogenicity , Lepidoptera/drug effects , Lepidoptera/pathogenicity , Oleic Acid/chemistry , Palmitic Acid/chemistry , Plant Gums/pharmacology , Ricinoleic Acids/chemistry , Spodoptera/drug effects , Spodoptera/pathogenicity
2.
Antimicrob Agents Chemother ; 59(8): 4782-99, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26033724

ABSTRACT

The aim of the present study was to synthesize silver (Ag) and titanium dioxide (TiO2) nanoparticles (NPs) using green synthesis from aqueous leaf extract of Euphorbia prostrata as antileishmanial agents and to explore the underlying molecular mechanism of induced cell death. In vitro antileishmanial activity of synthesized NPs was tested against promastigotes of Leishmania donovani by alamarBlue and propidium iodide uptake assays. Antileishmanial activity of synthesized NPs on intracellular amastigotes was assessed by Giemsa staining. The leishmanicidal effect of synthesized Ag NPs was further confirmed by DNA fragmentation assay and by cell cycle progression and transmission electron microscopy (TEM) of the treated parasites. TEM analysis of the synthesized Ag NPs showed a spherical shape with an average size of 12.82 ± 2.50 nm, and in comparison to synthesized TiO2 NPs, synthesized Ag NPs were found to be most active against Leishmania parasites after 24 h exposure, with 50% inhibitory concentrations (IC50) of 14.94 µg/ml and 3.89 µg/ml in promastigotes and intracellular amastigotes, respectively. A significant increase in G0/G1 phase of the cell cycle with a subsequent decrease in S (synthesis) and G2/M phases compared to controls was observed. The growth-inhibitory effect of synthesized Ag NPs was attributed to increased length of S phase. A decreased reactive oxygen species level was also observed, which could be responsible for the caspase-independent shift from apoptosis (G0/G1 arrest) to massive necrosis. High-molecular-weight DNA fragmentation as a positive consequence of necrotic cell death was also visualized. We also report that the unique trypanothione/trypanothione reductase (TR) system of Leishmania cells was significantly inhibited by synthesized Ag NPs. The green-synthesized Ag NPs may provide promising leads for the development of cost-effective and safer alternative treatment against visceral leishmaniasis.


Subject(s)
Apoptosis/drug effects , Cell Cycle Checkpoints/drug effects , Euphorbia/chemistry , Leishmania donovani/drug effects , Metal Nanoparticles/administration & dosage , Silver/pharmacology , Titanium/pharmacology , Antiprotozoal Agents/chemistry , Antiprotozoal Agents/pharmacology , Caspases/metabolism , G1 Phase/drug effects , Leishmaniasis, Visceral/drug therapy , Leishmaniasis, Visceral/metabolism , Metal Nanoparticles/chemistry , Necrosis/drug therapy , Plant Extracts/chemistry , Plant Extracts/pharmacology , Plant Leaves/chemistry , Resting Phase, Cell Cycle/drug effects , Silver/chemistry , Titanium/chemistry
3.
Malar J ; 14: 65, 2015 Feb 07.
Article in English | MEDLINE | ID: mdl-25879738

ABSTRACT

BACKGROUND: Development of resistance against the frontline anti-malarial drugs has created an alarming situation, which requires intensive drug discovery to develop new, more effective, affordable and accessible anti-malarial agents. METHODS: Inspired by their ethnobotanical reputation for being effective against febrile diseases, antiplasmodial potential of ethyl acetate extracts (EAE) and methanol extracts (ME) of 17 medicinal plants collected from the Eastern Ghats of South India and Buchpora, North India were explored against Plasmodium falciparum in vitro using the SYBR Green assay. The results were validated both by confirmation that the fall in fluorescence signal was not due to quenching effects mediated by phytochemical extracts and by Giemsa-stained microscopy. RESULTS: Using EAE or ME, promising antiplasmodial activity (IC50 Pf3D7 ≤ 20 µg/ml), was seen in Aerva lanata (Whole aerial parts-EAE), Anisomeles malabarica (Leaf-EAE), Anogeissus latifolia (bark-EAE), Cassia alata (leaves-EAE), Glycyrrhiza glabra (root-EAE), Juglans regia (seed-ME), Psidium guajava (leaf-ME and EAE) and Solanum xanthocarpum (Whole aerial parts-EAE). EAEs from leaves of Couroupita guianensis, Euphorbia hirta, Pergularia daemia, Tinospora cordifolia and Tridax procumbens as also ME from Ricinus communis (leaf and seed) showed good antiplasmodial activity (Pf 3D7 IC50 21 - 40 µg/ml). Moderate activity (Pf 3D7 IC50: 40-60 µg/mL) was shown by the leaf EAEs of Cardiospermum halicacabum, Indigofera tinctoria and Ricinus communis while the remaining extracts showed marginal (Pf 3D7 IC50 60 to >100 µg/ml) activities. The promising extracts showed good resistance indices (0.41 - 1.4) against the chloroquine resistant INDO strain of P. falciparum and good selectivity indices (3 to > 22.2) when tested against the HeLa cell line. CONCLUSION: These results provide validity to the traditional medicinal usage of some of these plants and further make a case for activity-guided purification of new pharmacophores against malaria.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Antimalarials/toxicity , Cell Survival/drug effects , Cells, Cultured , Erythrocytes/parasitology , HeLa Cells , Humans , India , Plant Extracts/toxicity
4.
Parasitol Res ; 113(5): 1657-72, 2014 May.
Article in English | MEDLINE | ID: mdl-24638906

ABSTRACT

Malaria is an overwhelming impact in the poorest countries in the world due to their prevalence, virulence and drug resistance ability. Currently, there is inadequate armoury of drugs for the treatment of malaria. This underscores the continuing need for the discovery and development of new effective and safe antimalarial drugs. To evaluate the in vitro and in vivo antimalarial activity of the leaf ethyl acetate extract of Murraya koenigii, bioassay-guided chromatographic fractionation was employed for the isolation and purification of antimalarial compounds. The in vitro antimalarial activity was assayed by the erythrocytic stages of chloroquine-sensitive strain of Plasmodium falciparum (3D7) in culture using the fluorescence-based SYBR Green I assay. The in vivo assay was done by administering mice infected with Plasmodium berghei (NK65) four consecutive daily doses of the extracts through oral route following Peter's 4-day curative standard test. The percentage suppression of parasitaemia was calculated for each dose level by comparing the parasitaemia in untreated control with those of treated mice. Cytotoxicity was determined against HeLa cells using MTT assay. Histopathology was studied in kidney, liver and spleen of isolated compound-treated Swiss albino mice. The leaf crude ethyl acetate extract of M. koenigii showed good in vitro antiplasmodial activity against P. falciparum. The in vivo test of the leaf crude ethyl acetate extract (600 mg/kg) showed reduced malaria parasitaemia by 86.6% against P. berghei in mice. Bioassay-guided fractionation of the leaf ethyl acetate extract of M. koenigii led to the isolation of two purified fractions C3B2 (2.84 g) and C3B4 (1.97 g). The purified fractions C3B2 and C3B4 were found to be active with IC50 values of 10.5 ± 0.8 and 8.25 ± 0.2 µg/mL against P. falciparum, and in vivo activity significantly reduced parasitaemia by 82.6 and 88.2% at 100 mg/kg/body weight on day 4 against P. berghei, respectively. The isolated fractions C3B2 and C3B4 were monitored by thin-layer chromatography until a single spot was obtained with R f values of 0.36 and 0.52, respectively. The pure compounds obtained in the present investigation were subjected to UV-visible spectroscopy, Fourier transformer infrared spectroscopy, 1D and 2D (1)H-Nuclear magnetic resonance (NMR), (13)C NMR, DEPT, COSY and Mass spectral analysis. Based on the spectral analysis, it is concluded that the isolated compounds were myristic acid (C3B2) and ß-caryophyllene (C3B4). The cytotoxic effect of myristic acid and ß-caryophyllene showed the TC50 values of >100 and 80.5 µg/mL, respectively against HeLa cell line. The histopathology study showed that protection against nephrotoxicity of kidney, hepatic damage of liver and splenocytes protection in spleen was achieved with the highest dose tested at 100 mg/kg/body weight. The present study provides evidence of antiplasmodial compounds from M. koenigii and is reported for the first time.


Subject(s)
Antimalarials/pharmacology , Murraya/chemistry , Plant Extracts/pharmacology , Plasmodium berghei/drug effects , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Female , HeLa Cells , Humans , Malaria/drug therapy , Male , Mice , Myristic Acid/isolation & purification , Plant Extracts/chemistry , Plant Leaves/chemistry , Polycyclic Sesquiterpenes , Sesquiterpenes/isolation & purification
5.
Parasitol Res ; 113(2): 469-79, 2014 Feb.
Article in English | MEDLINE | ID: mdl-24265057

ABSTRACT

Titanium dioxide nanoparticles (TiO2 NPs) are widely used in paints, printing ink, rubber, paper, cosmetics, sunscreens, car materials, cleaning air products, industrial photocatalytic processes, and decomposing organic matters in wastewater due to their unique physical, chemical, and biological properties. The present study was conducted to assess the antiparasitic efficacies of synthesized TiO2 NPs utilizing leaf aqueous extract of Solanum trilobatum against the adult head louse, Pediculus humanus capitis De Geer (Phthiraptera: Pediculidae); larvae of cattle tick Hyalomma anatolicum (a.) anatolicum Koch (Acari: Ixodidae), and fourth instar larvae of malaria vector Anopheles subpictus Grassi (Diptera: Culicidae). The green synthesized TiO2 NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), Energy-dispersive X-ray spectroscopy analysis (EDX), and Atomic force microscopy (AFM). XRD analysis of synthesized TiO2 NPs revealed that the particles were in the form of nanocrystals as evidenced by the major peaks at 2θ values of 27.52°, 36.21°, and 54.43° identified as 110, 101, and 211 reflections, respectively. FTIR spectra exhibited a prominent peak at 3,466 cm(-1) and showed OH stretching due to the alcoholic group, and the OH group may act as a capping agent. SEM images displayed NPs that were spherical, oval in shape, individual, and some in aggregates with an average size of 70 nm. Characterization of the synthesized TiO2 NPs using AFM offered a three-dimensional visualization and uneven surface morphology. The pediculocidal and acaricidal activities of synthesized TiO2 NPs showed the percent mortality of 31, 42, 63, 82, 100; 36, 44, 67, 89, and 100 at 2, 4, 6, 8, and 10 mg/L, respectively, against P. h. capitis and H. a. anatolicum. The average larval percent mortality of synthesized TiO2 NPs was 38, 47, 66, 79, and 100 at 1, 2, 3, 4, and 5 mg/L, respectively, against A. subpictus. The maximum activity was observed in the aqueous leaf extract of S. trilobatum, TiO(OH)2 solutions (bulk), and synthesized TiO2 NPs with LC50 values of 35.14, 25.85, and 4.34 mg/L; 47.15, 29.78, and 4.11 mg/L; and 28.80, 24.01, and 1.94 mg/L, and r (2) values of 0.982, 0.991, and 0.992; 0.947, 0.987, and 0.997; and 0.965, 0.998 and 0.985, respectively, against P. h. capitis, H. a. anatolicum, and A. subpictus. This study provides the first report on the pediculocidal, acaricidal, and larvicidal activity of synthesized TiO2 NPs. This is an ideal eco-friendly, novel, low-cost, and simple approach to satisfy the requirement of large-scale industrial production bearing the advantage for the control of P. h. capitis, H. a. anatolicum, and A. subpictus.


Subject(s)
Anopheles/drug effects , Ixodidae/drug effects , Metal Nanoparticles , Pediculus/drug effects , Plant Extracts/metabolism , Solanum/chemistry , Titanium/pharmacology , Acaricides/pharmacology , Animals , Cattle , Humans , Insecticides/pharmacology , Larva/drug effects , Metal Nanoparticles/chemistry , Metal Nanoparticles/ultrastructure , Microscopy, Electron, Scanning , Parasitic Sensitivity Tests , Plant Leaves/chemistry , Spectrometry, X-Ray Emission , X-Ray Diffraction
6.
Asian Pac J Trop Med ; 6(9): 682-8, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23827143

ABSTRACT

OBJECTIVE: To assess the acaricidal activity of titanium dioxide nanoparticles (TiO2 NPs) synthesized from flower aqueous extract of Calotropis gigantea(C. gigantea) against the larvae of Rhipicephalus (Boophilus) microplus [R. (B.) microplus] and the adult of Haemaphysalis bispinosa (H. bispinosa). METHODS: The lyophilized C. gigantea flower aqueous extract of 50 mg was added with 100 mL of TiO(OH)2 (10 mM) and magnetically stirred for 6 h. Synthesized TiO2 NPs were characterized by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Scanning electron microscopy (SEM), and Energy dispersive X-ray spectroscopy (EDX). The synthesised TiO2 NPs were tested against the larvae of R. (B.) microplus and adult of H. bispinosa were exposed to filter paper impregnated method. RESULTS: XRD confirmed the crystalline nature of the nanoparticles with the mean size of 10.52 nm. The functional groups for synthesized TiO2 NPs were 1 405.19, and 1 053.45 cm(-1) for -NH2 bending, primary amines and amides and 1 053.84 and 1 078.45 cm(-1) for C-O. SEM micrographs of the synthesized TiO2 NPs showed the aggregated and spherical in shape. The maximum efficacy was observed in the aqueous flower extract of C. gigantea and synthesized TiO2 NPs against R. (B.) microplus (LC50=24.63 and 5.43 mg/L and r(2)=0.960 and 0.988) and against H. bispinosa (LC50= 35.22 and 9.15 mg/L and r(2) = 0.969 and 0.969), respectively. CONCLUSIONS: The synthesized TiO2 NPs were highly stable and had significant acaricidal activity against the larvae of R. (B.) microplus and adult of H. bispinosa. This study provides the first report of synthesized TiO2 NPs and possessed excellent anti-parasitic activity.


Subject(s)
Acaricides/pharmacology , Calotropis/chemistry , Ixodidae/drug effects , Metal Nanoparticles/chemistry , Plant Extracts/pharmacology , Rhipicephalus/drug effects , Titanium/pharmacology , Acaricides/chemical synthesis , Acaricides/chemistry , Animals , Female , Flowers/chemistry , Ixodidae/growth & development , Male , Particle Size , Plant Extracts/chemistry , Rhipicephalus/growth & development , Titanium/chemistry
7.
Asian Pac J Trop Med ; 6(8): 625-30, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23790333

ABSTRACT

OBJECTIVE: To investigate the larvicidal and pupicidal activities of aqueous, ethyl acetate and methanol extracts of Catharanthus roseus (C. roseus) against malaria and filariasis vectors. METHODS: The larvicidal and pupicidal activities of C. roseus leaf extracts were tested against the fourth instar larvae and pupae of Anopheles stephensi (An. stephensi) and Culex quinquefasciatus (Cx. quinquefasciatus). The mortality was observed after 24 and 48 h post the treatment. The data were subjected to probit analysis to determine the lethal concentrations (LC50 and LC90) at which 50% and 90% of the treated larvae or pupae of the tested species were killed. RESULTS: The larval and pupal mortality were observed after 24 and 48 h of exposure of aqueous, ethyl acetate and methanol extracts of C. roseus; no mortality was observed in the control group. The LC50 values against the fourth-instar larvae of An. stephensi were 68.62 and 72.04 mg/mL for the aqueous extract, 82.47 mg/mL for the ethyl acetate extract, and 78.80 and 86.64 mg/mL for the methanol extract, while the aqueous, ethyl acetate and methanol extracts had LC50 values of 85.21, 76.84 and 94.20 mg/mL against the fourth-instar larvae of Cx. quinquefasciatus. The aqueous, ethyl acetate and methanol extracts had LC50 values of 118.08, 182.47 and 143.80 mg/mL against the pupae of An. stephensi and 146.20, 226.84 and 156.62 mg/mL against the pupae of Cx. quinquefasciatus, respectively. CONCLUSIONS: The aqueous and methanol extracts of C. roseus leaves had an excellent potential to control the malarial vector An. stephensi and filariasis vector Cx. quinquefasciatus.


Subject(s)
Anopheles/drug effects , Catharanthus/chemistry , Culex/drug effects , Disease Vectors , Insecticides/pharmacology , Plant Extracts/pharmacology , Animals , Biological Assay , Female , Insecticides/isolation & purification , Larva/drug effects , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Pupa/drug effects , Survival Analysis
8.
Exp Parasitol ; 134(1): 26-32, 2013 May.
Article in English | MEDLINE | ID: mdl-23399920

ABSTRACT

Malaria caused by the protozoan parasite Plasmodium falciparum, is a major health problem of the developing world. In the present study medicinal plants from Eastern Ghats of South India have been extracted with ethyl acetate and assayed for growth inhibition of asexual erythrocytic stages of chloroquine (CQ)-sensitive (3D7) and (CQ)-resistant (INDO) strains of P. falciparum in culture using the fluorescence-based SYBR Green I assay. Studied extracts showed a spectrum of antiplasmodial activities ranging from (a) very good (IC(50)<10-10 µg/mL: Cyperus rotundus and Zingiber officinale); (b) good (IC(50), >10-15 µg/mL: Ficus religiosa and Murraya koenigii); (c) moderate (IC(50)>15-25 µg/mL: Ficus benghalensis); (d) poor activity (IC(50)>25-60 µg/mL) and (e) inactive (IC(50)>60 µg/mL). Resistance indices ranging from 0.78 to 1.28 suggest that some of these extracts had equal promise against the CQ resistant INDO strain of P. falciparum. Cytotoxicity assessment of the extracts against HeLa cell line using MTT assay revealed that the selectivity indices in the range of 3-15 suggesting a good margin of safety.


Subject(s)
Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Cyperus/chemistry , Drug Resistance , Ficus/chemistry , Zingiber officinale/chemistry , HeLa Cells/drug effects , Humans , India , Inhibitory Concentration 50 , Murraya/chemistry , Plant Extracts/isolation & purification , Plant Extracts/toxicity
9.
Asian Pac J Trop Med ; 6(2): 95-101, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23339909

ABSTRACT

OBJECTIVE: To investigate the larvicidal activity of synthesized silver nanoparticles (Ag NPs) utilizing aqueous bark extract of Ficus racemosa (F. racemosa) was tested against fourth instar larvae of filariasis vector, Culex quinquefasciatus (Cx. quinquefasciatus) and japanese encephalitis vectors, Culex gelidus (Cx. gelidus). METHODS: The synthesized Ag NPs was characterized by UV-vis spectrum, X-ray diffraction (XRD), Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR). The larvicidal activities were assessed for 24 h against the larvae of Cx. quinquefasciatus and Cx. gelidus with varying concentrations of aqueous bark extract of F. racemosa and synthesized Ag NPs. LC(50) and r(2) values were calculated. RESULTS: The maximum efficacy was observed in crude aqueous extract of F. racemosa against the larvae of Cx. quinquefasciatus and Cx. gelidus (LC(50)=67.72 and 63.70 mg/L; r(2)=0.995 and 0.985) and the synthesized Ag NPs (LC(50)=12.00 and 11.21 mg/L; r(2)=0.997 and 0.990), respectively. Synthesized Ag NPs showed the XRD peaks at 2 θ values of 27.61, 29.60, 35.48, 43.48 and 79.68 were identified as (210), (121), (220), (200) and (311) reflections, respectively. The FTIR spectra of Ag NPs exhibited prominent peaks at 3,425, 2,878, 1,627 and 1,382 in the region 500-3,000 cm(-1). The peaks correspond to the presence of a stretching vibration of (NH) C=O group. SEM analysis showed shape in cylindrical, uniform and rod with the average size of 250.60 nm. CONCLUSIONS: The biosynthesis of silver nanoparticles using bark aqueous extract of F. racemosa and its larvicidal activity against the larvae of disease spreading vectors. The maximum larvicidal efficacy was observed in the synthesized Ag NPs.


Subject(s)
Culex/drug effects , Ficus/chemistry , Insecticides/pharmacology , Metal Nanoparticles/administration & dosage , Plant Extracts/pharmacology , Silver/pharmacology , Animals , Green Chemistry Technology , Insecticides/chemical synthesis , Insecticides/chemistry , Larva/drug effects , Metal Nanoparticles/chemistry , Plant Bark/chemistry , Plant Extracts/chemistry , Silver/chemistry , Spectrum Analysis
10.
Vet Parasitol ; 191(3-4): 332-9, 2013 Jan 31.
Article in English | MEDLINE | ID: mdl-23040768

ABSTRACT

The present study was on assessment of the anti-parasitic activities of nickel nanoparticles (Ni NPs) against the larvae of cattle ticks Rhipicephalus (Boophilus) microplus and Hyalomma anatolicum (a.) anatolicum (Acari: Ixodidae), fourth instar larvae of Anopheles subpictus, Culex quinquefasciatus and Culex gelidus (Diptera: Culicidae). The metallic Ni NPs were synthesized by polyol process from Ni-hydrazine as precursor and Tween 80 as both the medium and the stabilizing reagent. The synthesized Ni NPs were characterized by Fourier transform infrared (FTIR) spectroscopy analysis which indicated the presence of Ni NPs. Synthesized Ni NPs showed the X-ray diffraction (XRD) peaks at 42.76°, 53.40°, and 76.44°, identified as 111, 220, and 200 reflections, respectively. Scanning electron microscopy (SEM) analysis of the synthesized Ni NPs clearly showed that the Ni NPs were spherical in shape with an average size of 150 nm. The Ni NPs showed maximum activity against the larvae of R. (B.) microplus, H. a. anatolicum, A. subpictus, C. quinquefasciatus and C. gelidus with LC(50) values of 10.17, 10.81, 4.93, 5.56 and 4.94 mg/L; r(2) values of 0.990, 0.993, 0.992, 0.950 and 0.988 and the efficacy of Ni-hydrazine complexes showed the LC(50) values of 20.35, 22.72, 8.29, 9.69 and 7.83 mg/L; r(2) values of 0.988, 0.986, 0.989, 0.944 and 0.978, respectively. The findings revealed that synthesized Ni NPs possess excellent larvicidal parasitic activity. To the best of our knowledge, this is the first report on larvicidal activity of blood feeding parasites using synthesized Ni NPs.


Subject(s)
Antiparasitic Agents/pharmacology , Culicidae/drug effects , Ixodidae/drug effects , Metal Nanoparticles , Nickel/pharmacology , Animals , Larva/drug effects , Metal Nanoparticles/chemistry , Spectroscopy, Fourier Transform Infrared
11.
Parasitol Res ; 112(1): 215-26, 2013 Jan.
Article in English | MEDLINE | ID: mdl-22009268

ABSTRACT

The aim of the present study was to assess the larvicidal property of marine actinobacterial compound 5-(2,4-dimethylbenzyl) pyrrolidin-2-one (DMBPO) extracted and isolated from Streptomyces VITSVK5 sp. tested against the larvae of Rhipicephalus (Boophilus) microplus Canestrini (Acari: Ixodidae), Anopheles stephensi Liston, and Culex tritaeniorhynchus Giles (Diptera: Culicidae). The isolate bacteria was taxonomically characterized, identified, and designated as Streptomyces VITSVK5 sp. The crude extract was loaded on silica gel column and eluted with chloroform:methanol. The isolated pure compound was analyzed by thin layer chromatography using chloroform and methanol as the solvent system and confirmed by high-performance liquid chromatography. The structure of the purified compound was established from infrared, ultraviolet, (1)H-nuclear magnetic resonance (NMR), (13)C-NMR, and mass spectral data. The chemical shift assignments obtained for the aliphatic compound from (1)H-NMR corresponding to the molecular formula C(13)H(17)NO. Bioassay-guided fractionation led to the isolation of compound which was identified as DMBPO. In the present study, Streptomyces VITSVK5 sp. crude extract and different fractions were tested against the larvae of parasites at the concentration of 1,000 ppm. Those fractions showing 100% mortality in 24 h alone was selected for further column chromatographic separation. The purified compound, C(13)H(17)NO, was tested in the concentrations of 500, 250, 125, 62.5, and 31.25 ppm and observed the percent larval mortality of 100, 70, 64, 40, and 28 against R. microplus; 100, 79, 63, 36, and 22 against A. stephensi; and 100, 84, 67, 42, and 27 against C. tritaeniorhynchus, respectively. The crude extract showed parasitic effects after 24 h of exposure at 1,000 ppm, and parasite mortality was observed against the larvae of R. microplus (LC(50) = 210.39 ppm, r (2) = 0.873); A. stephensi (LC(50) = 169.38 ppm, r (2) = 0.840); and C. tritaeniorhynchus (LC(50) = 198.75 ppm, r (2) = 0.887). The maximum efficacy was observed in purified marine actinobacterial compound DMBPO with LC(50) and r (2) values against the larvae of R. microplus (84.31 ppm, 0.889); A. stephensi (88.97 ppm, 0.817), and C. tritaeniorhynchus (74.95 ppm, 0.781), respectively. The control (distilled water) showed nil mortality in the concurrent assay.


Subject(s)
Anopheles/drug effects , Culex/drug effects , Insecticides/pharmacology , Pyrrolidinones/pharmacology , Rhipicephalus/drug effects , Streptomyces/chemistry , Animals , Chromatography, Thin Layer , Insecticides/chemistry , Insecticides/isolation & purification , Larva/drug effects , Molecular Structure , Pyrrolidinones/chemistry , Pyrrolidinones/isolation & purification , Spectrum Analysis , Streptomyces/classification , Streptomyces/isolation & purification , Survival Analysis
12.
Exp Parasitol ; 132(2): 180-4, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22771864

ABSTRACT

Infections due to protozoa of the genus Leishmania are a major worldwide health problem, with high endemicity in developing countries. The aim of this study was to evaluate the in vitro antileishmanial activity of the acetone and methanol leaf extracts of Anisomeles malabarica, flower of Gloriosa superba, leaf of Ocimum basilicum, leaf and seed of Ricinus communis against promastigotes form of Leishmania donovani. Antiparasitic evaluations of different plant crude extracts were performed on 96 well plates at 37°C for 24-48 h. Out of the 10 experimental plant extracts tested, the leaf methanol extracts of A. malabarica, and R. communis showed good antileishmanial activity (IC(50)=126±19.70 and 184±39.33 µg/mL), respectively against promastigotes. Effective antileishmanial activity was observed making these plants as good candidates for isolation of antiprotozoal compounds which could serve as new lead structures for drug development.


Subject(s)
Leishmania donovani/drug effects , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Dose-Response Relationship, Drug , Flowers/chemistry , India , Lamiaceae/chemistry , Liliaceae/chemistry , Ocimum basilicum/chemistry , Plant Leaves/chemistry , Ricinus/chemistry , Seeds/chemistry
13.
Exp Parasitol ; 132(2): 156-65, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22750410

ABSTRACT

The present study was to determine the efficacies of anti-parasitic activities of synthesized silver nanoparticles (Ag NPs) using stem aqueous extract of Cissus quadrangularis against the adult of hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and the larvae of cattle tick, Rhipicephalus (Boophilus) microplus (Acari: Ixodidae). Contact toxicity method was followed to determine the potential of parasitic activity. Twelve milliliters of stem aqueous extract of C. quadrangularis was treated with 88 ml of 1mM silver nitrate (AgNO(3)) solution at room temperature for 30 min and the resulting solution was yellow-brown color indicating the formation extracellular synthesis of Ag NPs. The synthesized Ag NPs were characterized with UV-visible spectroscopy, X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), Field emission scanning electron microscope (FESEM) and energy dispersive X-ray (EDX) spectroscopy. The synthesized Ag NPs were recorded by UV-visible spectrum at 420 nm and XRD patterns showed the nanoparticles crystalline in nature. FTIR analysis confirmed that the bioreduction of Ag((+)) ions to Ag NPs were due to the reduction by capping material of plant extract. FESEM image of Ag NPs showed spherical and oval in shape. By using the Bragg's Law and Scherrer's constant, the average mean size of synthesized Ag NPs was 42.46 nm. The spot EDX analysis showed the complete chemical composition of the synthesized Ag NPs. The mortality obtained by the synthesized Ag NPs from the C. quadrangularis was more effective than the aqueous extract of C. quadrangularis and AgNO(3) solution (1 mM). The adulticidal activity was observed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the adult of H. maculata with LC(50) values of 37.08, 40.35 and 6.30 mg/L; LC(90) values of 175.46, 192.17 and 18.14 mg/L and r(2) values of 0.970, 0.992 and 0.969, respectively. The maximum efficacy showed in the aqueous extract, AgNO(3) solution and synthesized Ag NPs against the larvae of R. (B.) microplus with LC(50) values of 50.00, 21.72 and 7.61 mg/L; LC(90) values of 205.12, 82.99 and 22.68 mg/L and r(2) values of 0.968, 0.945 and 0.994, respectively. The present study is the first report on antiparasitic activity of the experimental plant extract and synthesized Ag NPs. This is an ideal eco-friendly and inexpensive approach for the control of H. maculata and R. (B.) microplus.


Subject(s)
Cissus/chemistry , Diptera/drug effects , Plant Extracts/pharmacology , Rhipicephalus/drug effects , Animals , Biological Assay , Cattle , Cattle Diseases/drug therapy , Cattle Diseases/parasitology , Ectoparasitic Infestations/drug therapy , Ectoparasitic Infestations/veterinary , Female , Larva/drug effects , Lethal Dose 50 , Metal Nanoparticles/chemistry , Microscopy, Electron, Scanning/methods , Plant Extracts/therapeutic use , Plant Stems/chemistry , Silver , Silver Nitrate , Solutions , Spectrometry, X-Ray Emission , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Tick Infestations/drug therapy , Tick Infestations/veterinary , X-Ray Diffraction
14.
J Ethnopharmacol ; 141(3): 796-802, 2012 Jun 14.
Article in English | MEDLINE | ID: mdl-22433533

ABSTRACT

ETHNOPHARMACOLOGICAL RELEVANCE: An ethnopharmacological investigation of medicinal plants traditionally used to treat diseases associated with fevers in Dharmapuri region of South India was undertaken. Twenty four plants were identified and evaluated for their in vitro activity against Plasmodium falciparum and assessed for cytotoxicity against HeLa cell line. AIM OF THE STUDY: This antimalarial in vitro study was planned to correlate and validate the traditional usage of medicinal plants against malaria. MATERIALS AND METHODS: An ethnobotanical survey was made in Dharmapuri region, Tamil Nadu, India to identify plants used in traditional medicine against fevers. Selected plants were extracted with ethyl acetate and methanol and evaluated for antimalarial activity against erythrocytic stages of chloroquine (CQ)-sensitive 3D7 and CQ-resistant INDO strains of Plasmodium falciparum in culture using the fluorescence-based SYBR Green I assay. Cytotoxicity was determined against HeLa cells using MTT assay. RESULTS: Promising antiplasmodial activity was found in Aegle marmelos [leaf methanol extract (ME) (IC(50)=7 µg/mL] and good activities were found in Lantana camara [leaf ethyl acetate extract (EAE) IC(50)=19 µg/mL], Leucas aspera (flower EAE IC(50)=12.5 µg/mL), Momordica charantia (leaf EAE IC(50)=17.5 µg/mL), Phyllanthus amarus (leaf ME IC(50)=15 µg/mL) and Piper nigrum (seed EAE IC(50)=12.5 µg/mL). The leaf ME of Aegle marmelos which showed the highest activity against Plasmodium falciparum elicited low cytotoxicity (therapeutic index>13). CONCLUSION: These results provide validation for the traditional usage of some medicinal plants against malaria in Dharmapuri region, Tamil Nadu, India.


Subject(s)
Antimalarials/pharmacology , Plant Extracts/pharmacology , Plants, Medicinal , Plasmodium falciparum/drug effects , Cell Survival/drug effects , Female , HeLa Cells , Health Surveys , Humans , India , Male , Medicine, Traditional , Middle Aged
15.
Parasitol Res ; 111(5): 2189-99, 2012 Nov.
Article in English | MEDLINE | ID: mdl-22006187

ABSTRACT

Plant products may be alternative sources of parasitic control agents, since they constitute a rich source of bioactive compounds that are eco-friendly and nontoxic products. The plant extracts are good and safe alternatives due to their low toxicity to mammals and easy biodegradability. In the present study, fruit peel aqueous extract of Annona squamosa (Annonaceae) extracted by immersion method exhibited adulticidal activity against Haemaphysalis bispinosa (Acarina: Ixodidae) and the hematophagous fly, Hippobosca maculata (Diptera: Hippoboscidae), and larvicidal activity against the cattle tick Rhipicephalus (Boophilus) microplus (Acari: Ixodidae), Anopheles subpictus, and Culex quinquefasciatus (Diptera: Culicidae). The chemical composition of A. squamosa fruit peel aqueous extract was analyzed by gas chromatography-mass spectrometry. The major chemical constituent of peel aqueous extract of A. squamosa was identified as 1H- cycloprop[e]azulen-7-ol decahydro-1,1,7-trimethyl-4-methylene-[1ar-(1aα,4aα, 7ß, 7 a, ß, 7bα)] (28.55%) by comparison of mass spectral data and retention times. The other major constituents present in the aqueous extract were retinal 9-cis- (12.61%), 3,17-dioxo-4-androsten-11alpha-yl hydrogen succinate (6.86%), 1-naphthalenepentanol decahydro-5-(hydroxymethyl)-5,8a-dimethyl-y,2-bis(methylene)-(1α,4aß,5α,8aα) (14.83%), 1-naphthalenemethanol decahydro -5-(5-hydroxy-3-methyl-3-pentenyl)- 1,4a-di methyl - 6-methylene -(1S-[1α, 4aα, 5α(E), 8aß] (4.44%), (-)-spathulenol (20.75%), podocarp-7-en-3-one13ß-methyl-13-vinyl- (5.98%), and 1-phenanthrene carboxaldehyde 7-ethenyl-1,2,3,4,4a,4,5,6,7,9,10,10a-dodecahydro-1,4a,7-trimethyl-[1R-(1α,4aß.4bα,7ß, 10aα)]-(5.98%). The adult and larval parasitic mortalities observed in fruit peel aqueous extract of A. squamosa were 31, 59, 80, 91, and100%; 27, 42, 66, 87, and 100%; and 33, 45, 68, 92, and 100% at the concentrations of 250, 500, 1,000, 1,500, and 2,000 ppm, respectively, against Haemaphysalis bispinosa, Hippobosca maculata, and R. microplus. The observed larvicidal efficacies were 36, 55, 72, 92, 100% and 14, 34, 68, 89, and 100% at 200, 400, 600, 800, and 1,000 ppm, respectively, against A. subpictus and C. quinquefasciatus. The highest parasite mortality was found after 24 h of exposure against Haemaphysalis bispinosa (LC(50) = 404.51 ppm, r (2) = 0.890), Hippobosca maculata (LC(50) = 600.75 ppm, r (2) = 0.983), the larvae of R. microplus (LC(50) = 548.28 ppm, r (2) = 0.975), fourth-instar larvae of A. subpictus (LC(50) = 327.27 pm, r (2) = 0.970), and C. quinquefasciatus (LC(50) = 456.29 ppm, r (2) = 0.974), respectively. The control (distilled water) showed nil mortality in the concurrent assay. The χ (2) values were significant at p < 0.05 level. Therefore, the eco-friendly and biodegradable compounds from fruit peel aqueous extract of A. squamosa may be an alternative to conventional synthetic chemicals, particularly in integrated approach for the control of Haemaphysalis bispinosa, Hippobosca maculata, R. microplus, and the medically important vectors A. subpictus and C. quinquefasciatus.


Subject(s)
Acaricides/pharmacology , Annona/chemistry , Culicidae/drug effects , Diptera/drug effects , Insecticides/pharmacology , Ixodidae/drug effects , Plant Extracts/pharmacology , Acaricides/chemistry , Acaricides/isolation & purification , Animals , Culicidae/physiology , Diptera/physiology , Gas Chromatography-Mass Spectrometry , Insecticides/chemistry , Insecticides/isolation & purification , Ixodidae/physiology , Plant Extracts/chemistry , Plant Extracts/isolation & purification , Survival Analysis
16.
Parasitol Res ; 111(6): 2329-37, 2012 Dec.
Article in English | MEDLINE | ID: mdl-21987105

ABSTRACT

The purpose of the present study was based on assessments of the antiparasitic activities of synthesized titanium dioxide nanoparticles (TiO(2) NPs) utilizing leaf aqueous extract of Catharanthus roseus against the adults of hematophagous fly, Hippobosca maculata Leach (Diptera: Hippoboscidae), and sheep-biting louse, Bovicola ovis Schrank (Phthiraptera: Trichodectidae). The synthesized TiO(2) NPs were analyzed by X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM), and atomic force microscopy (AFM). The formation of the TiO(2) NPs synthesized from the XRD spectrum compared with the standard confirmed spectrum of titanium particles formed in the present experiments were in the form of nanocrystals, as evidenced by the peaks at 2θ values of 27.43°, 36.03°, and 54.32°. The FTIR spectra of TiO(2) NPs exhibited prominent peaks at 714 (Ti-O-O bond), 1,076 (C-N stretch aliphatic amines), 1,172 (C-O stretching vibrations in alcoholic groups), 1,642 (N-H bend bond), and 3,426 (O-H stretching due to alcoholic group). SEM analysis of the synthesized TiO(2) NPs clearly showed the clustered and irregular shapes, mostly aggregated and having the size of 25-110 nm. By Bragg's law and Scherrer's constant, it is proved that the mean size of synthesized TiO(2) NPs was 65 nm. The AFM obviously depicts the formation of the rutile and anatase forms in the TiO(2) NPs and also, the surface morphology of the particles is uneven due to the presence of some of the aggregates and individual particles. Adulticidal parasitic activity was observed in varying concentrations of aqueous leaf extract of C. roseus, TiO(2) solution, and synthesized TiO(2) NPs for 24 h. The maximum parasitic activity was observed in aqueous crude leaf extracts of C. roseus against the adults of H. maculata and B. ovis with LD(50) values of 36.17 and 30.35 mg/L, and r (2) values of 0.948 and 0.908, respectively. The highest efficacy was reported in 5 mM TiO(2) solution against H. maculata and B. ovis (LD(50) = 33.40 and 34.74 mg/L; r (2) = 0.786 and 0.873), respectively, and the maximum activity was observed in the synthesized TiO(2) NPs against H. maculata and B. ovis with LD(50) values of LD(50) = 7.09 and 6.56 mg/L, and r (2) values of 0.880 and 0.913, respectively. This method is considered as an innovative alternative approach to control the hematophagous fly and sheep-biting louse.


Subject(s)
Catharanthus/metabolism , Diptera/drug effects , Insecticides/metabolism , Ischnocera/drug effects , Nanoparticles , Plant Extracts/metabolism , Titanium/metabolism , Animals , Biological Assay , Insecticides/chemistry , Insecticides/pharmacology , Lethal Dose 50 , Microscopy, Atomic Force , Microscopy, Electron, Scanning , Plant Leaves/metabolism , Spectroscopy, Fourier Transform Infrared , Survival Analysis , Titanium/chemistry , Titanium/pharmacology , X-Ray Diffraction
17.
Parasitol Res ; 111(4): 1629-35, 2012 Oct.
Article in English | MEDLINE | ID: mdl-21842382

ABSTRACT

The purpose of this study is to determine the efficacies of hexane, chloroform, ethyl acetate, acetone, and methanol leaf extracts of Euphorbia hirta L., Psidium guajava L., Ricinus communis L., Solanum trilobatum L., and Tridax procumbens L. against sheep fluke Paramphistomum cervi (Digenea: Paramphistomatidae). All plant extracts showed moderate effects after 24 h of exposure; however, the highest parasite mortality was found in the methanol extract of R. communis. In the present study, bioassay-guided fractionation of methanol extract of R. communis led to the separation and identification of epicatechin as a potential new compound (LC(50) = 31.2; LC(90) = 105.0 ppm) against P. cervi. The structures were established from infrared, ultraviolet, (1)H-nuclear magnetic resonance (NMR), (13)C-NMR, and mass spectral data which confirmed the identification of the compound epicatechin from R. communis. Results of this study showed that the methanol extract of R. communis may be considered as a potent source and epicatechin as a new natural parasitic agent.


Subject(s)
Anthelmintics/pharmacology , Catechin/pharmacology , Paramphistomatidae/drug effects , Plant Extracts/pharmacology , Ricinus/chemistry , Animals , Anthelmintics/isolation & purification , Catechin/chemistry , Catechin/isolation & purification , Magnetic Resonance Spectroscopy , Mass Spectrometry , Molecular Structure , Plant Extracts/isolation & purification , Plant Leaves/chemistry , Plants, Medicinal/chemistry , Survival Analysis
18.
Parasitol Res ; 111(2): 703-15, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21643655

ABSTRACT

The emergence and spread of Plasmodium falciparum with resistance to chloroquine (CQ), the safest and cheapest anti-malarial drug, coupled with the increasing cost of alternative drugs especially in developing countries have necessitated the urgent need to tap the potential of plants for novel anti-malarials. The present study investigates the anti-malarial activity of the methanolic extracts of 13 medicinal plants from the Malaiyur and Javadhu hills of South India against blood stage CQ-sensitive (3D7) and CQ-resistant (INDO) strains of P. falciparum in culture using the fluorescence-based SYBR Green I assay. Sorbitol-synchronized parasites were incubated under normal culture conditions at 2% hematocrit and 1% parasitemia in the absence or presence of increasing concentrations of plant extracts. CQ and artemisinin were used as positive controls, while 0.4% DMSO was used as the negative control. The cytotoxic effects of extracts on host cells were assessed by functional assay using HeLa cells cultured in RPMI containing 10% fetal bovine serum, 0.21% sodium bicarbonate and 50 µg/mL gentamycin (complete medium). Plant extracts (bark methanol extracts of Annona squamosa (IC(50), 30 µg/mL), leaf extracts of Ocimum gratissimum (IC(50), 32 µg/mL), Ocimum tenuiflorum (IC(50), 31 µg/mL), Solanum torvum (IC(50), 31 µg/mL) and Justicia procumbens (IC(50), 63 µg/mL), showed moderate activity. The leaf extracts of Aristolochia indica (IC(50), 10 µg/mL), Cassia auriculata (IC(50), 14 µg/mL), Chrysanthemum indicum (IC(50), 20 µg/mL) and Dolichos biflorus (IC(50), 20 µg/mL) showed promising activity and low activity was observed in the flower methanol extracts of A. indica , leaf methanol extract of Catharanthus roseus, and Gymnema sylvestre (IC(50), >100 µg/mL). These four extracts exhibited promising IC(50) (µg/mL) of 17, 24, 19 and 24 respectively also against the CQ resistant INDO strain of P. falciparum. The high TC(50) in mammalian cell cytotoxicity assay and the low IC(50) in anti-malarial P. falciparum assay indicates selectivity and good resistance indices in the range of 0.9-1.7 for leaf extracts of A. indica, C. auriculata, C. indicum and D. biflorus suggests that these may serve as anti-malarial agents even in their crude form. These results indicate a possible explanation of the traditional use of some of these medicinal plants against malaria or malaria-like conditions.


Subject(s)
Antimalarials/therapeutic use , Plant Extracts/pharmacology , Plants, Medicinal/chemistry , Plasmodium falciparum/drug effects , Animals , Antimalarials/chemistry , Chloroquine/pharmacology , Drug Resistance , HeLa Cells , Humans , India , Plant Components, Aerial/chemistry , Plant Extracts/chemistry
19.
Parasitol Res ; 111(2): 921-33, 2012 Aug.
Article in English | MEDLINE | ID: mdl-21638210

ABSTRACT

The purpose of the present study was to investigate the acaricidal and larvicidal activity against the larvae of Haemaphysalis bispinosa Neumann (Acarina: Ixodidae) and larvae of hematophagous fly Hippobosca maculata Leach (Diptera: Hippoboscidae) and against the fourth-instar larvae of malaria vector, Anopheles stephensi Liston, Japanese encephalitis vector, Culex tritaeniorhynchus Giles (Diptera: Culicidae) of synthesized silver nanoparticles (AgNPs) utilizing aqueous leaf extract from Musa paradisiaca L. (Musaceae). The color of the extract changed to light brown within an hour, and later it changed to dark brown during the 30-min incubation period. AgNPs results were recorded from UV-vis spectrum at 426 nm; Fourier transform infrared (FTIR) analysis confirmed that the bioreduction of Ag(+) ions to silver nanoparticles are due to the reduction by capping material of plant extract, X-ray diffraction (XRD) patterns clearly illustrates that the nanoparticles formed in the present synthesis are crystalline in nature and scanning electron microscopy (SEM) support the biosynthesis and characterization of AgNPs with rod in shape and size of 60-150 nm. After reaction, the XRD pattern of AgNPs showed diffraction peaks at 2θ = 34.37°, 38.01°, 44.17°, 66.34° and 77.29° assigned to the (100), (111), (102), (110) and (120) planes, respectively, of a faced centre cubic (fcc) lattice of silver were obtained. For electron microscopic studies, a 25 µl sample was sputter-coated on copper stub, and the images of nanoparticles were studied using scanning electron microscopy. The spot EDX analysis showed the complete chemical composition of the synthesized AgNPs. The parasite larvae were exposed to varying concentrations of aqueous extract of M. paradisiaca and synthesized AgNPs for 24 h. In the present study, the percent mortality of aqueous extract of M. paradisiaca were 82, 71, 46, 29, 11 and 78, 66, 38, 31and 16 observed in the concentrations of 50, 40, 30, 20, 10 mg/l for 24 h against the larvae of H. bispinosa and Hip. maculata, respectively. The maximum efficacy was observed in the aqueous extract of M. paradisiaca against the H. bispinosa, Hip. maculata, and the larvae of A. stephensi, C. tritaeniorhynchus with LC(50) values of 28.96, 31.02, 26.32, and 20.10 mg/lm, respectively (r (2) = 0.990, 0.968, 0.974, and 0.979, respectively). The synthesized AgNPs of M. paradisiaca showed the LC(50) and r (2) values against H. bispinosa, (1.87 mg/l; 0.963), Hip. maculata (2.02 mg/l; 0.976), and larvae of A. stephensi (1.39; 0.900 mg/l), against C. tritaeniorhynchus (1.63 mg/l; 0.951), respectively. The χ (2) values were significant at p < 0.05 level.


Subject(s)
Acaricides/pharmacology , Insecta/drug effects , Ixodidae/drug effects , Metal Nanoparticles/chemistry , Musa/metabolism , Silver/pharmacology , Acaricides/chemistry , Animals , Fruit , Larva/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Silver/chemistry
20.
Parasitol Res ; 111(6): 2439-48, 2012 Dec.
Article in English | MEDLINE | ID: mdl-22033735

ABSTRACT

With a greater awareness of the hazards associated with the use of synthetic organic insecticides, there has been an urgent need to explore suitable alternative products for pest control. Musca domestica is ubiquitous insect that has the potential to spread a variety of pathogens to humans and livestock. They are mechanical carriers of more than hundred human and animal intestinal diseases and are responsible for protozoan, bacterial, helminthic, and viral infections. The present work aimed to investigate the feeding deterrent activity of synthesized silver nanoparticles (Ag NPs) using leaf aqueous extract of Manilkara zapota against M. domestica. The synthesized Ag NPs were recorded from UV-vis spectrum at 421 nm and scanning electron microscopy confirm the biosynthesis and characterization of Ag NPs with spherical and oval in shape and size of 70-140 nm. The FTIR analysis of the purified nanoparticles showed the presence of bands 1,079, 1,383, 1,627, 2,353, and 2,648 cm(-1), which were complete synthesis of AgNPs; the XRD pattern of AgNPs showed diffraction peaks at 2θ values of 38.06°, 44.37°, 64.51°, and 77.31° sets of lattice planes were observed (111), (200), (220), and (311) facts of silver, respectively. Adult flies were exposed to different concentrations of the aqueous extract of synthesized Ag NPs, 1 mM silver nitrate (AgNO(3)) solution and aqueous extract of M. zapota for 1, 2, and 3 h; however, AgNPs showed 72% mortality in 1 h, 89% mortality was found in 2 h, and 100% mortality was found in 3 h exposure at the concentration of 10 mg/mL and the leaf aqueous extract showed 32% mortality in 1 h, 48% mortality was found in 2 h, and 83% mortality was found in 3 h exposure at concentration of 50 mg/mL. The most efficient activity was observed in synthesized Ag NPs against M. domestica (LD(50) = 3.64 mg/mL; LD(90) = 7.74 mg/mL), the moderate activity reported in the aqueous extract of M. zapota (LD(50) = 28.35 mg/mL; LD(90) = 89.19 mg/mL) and nil activity were observed in AgNO(3) solution at 3 h exposure time at 10 mg/mL. Dimethyl 2, 2-dichlorovinyl phosphate (DDVP) was used as a positive control and showed the LD(50) value of 3.38 mL/L. These results suggest that the synthesized Ag NPs have the potential to be used as an ideal eco-friendly approach for the control of the adult of M. domestica. This method is considered as a new approach to control sanitary pest. Therefore, this study provides first report on the feeding deterrent activity of synthesized Ag NPs against housefly.


Subject(s)
Houseflies/drug effects , Insect Repellents/pharmacology , Manilkara/metabolism , Nanoparticles , Silver/pharmacology , Animals , Insect Repellents/metabolism , Lethal Dose 50 , Microscopy, Electron, Scanning , Plant Extracts/metabolism , Plant Leaves/metabolism , Silver/metabolism , Spectrophotometry, Ultraviolet , Spectroscopy, Fourier Transform Infrared , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...