Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2023 Sep 17.
Article in English | MEDLINE | ID: mdl-37745587

ABSTRACT

Breast cancer is categorized by the molecular and histologic presentation of the tumor, with the major histologic subtypes being No Special Type (NST) and Invasive Lobular Carcinoma (ILC). ILC are characterized by growth in a single file discohesive manner with stromal infiltration attributed to their hallmark pathognomonic loss of E-cadherin ( CDH1 ). Few ILC cell line models are available to researchers. Here we report the successful establishment and characterization of a novel ILC cell line, WCRC-25, from a metastatic pleural effusion from a postmenopausal Caucasian woman with metastatic ILC. WCRC-25 is an ER-negative luminal epithelial ILC cell line with both luminal and Her2-like features. It exhibits anchorage independent growth and haptotactic migration towards Collagen I. Sequencing revealed a CDH1 Q706* truncating mutation, together with mutations in FOXA1, CTCF, BRCA2 and TP53 , which were also seen in a series of metastatic lesions from the patient. Copy number analyses revealed amplification and deletion of genes frequently altered in ILC while optical genome mapping revealed novel structural rearrangements. RNA-seq analysis comparing the primary tumor, metastases and the cell line revealed signatures for cell cycle progression and receptor tyrosine kinase signaling. To assess targetability, we treated WCRC-25 with AZD5363 and Alpelisib confirming WCRC-25 as susceptible to PI3K/AKT signaling inhibition as predicted by our RNA sequencing analysis. In conclusion, we report WCRC-25 as a novel ILC cell line with promise as a valuable research tool to advance our understanding of ILC and its therapeutic vulnerabilities. Financial support: The work was in part supported by a Susan G Komen Leadership Grant to SO (SAC160073) and NCI R01 CA252378 (SO/AVL). AVL and SO are Komen Scholars, Hillman Foundation Fellows and supported by BCRF. This project used the UPMC Hillman Cancer Center and Tissue and Research Pathology/Pitt Biospecimen Core shared resource which is supported in part by award P30CA047904. This research was also supported in part by the University of Pittsburgh Center for Research Computing, RRID:SCR_022735, through the resources provided. Specifically, this work used the HTC cluster, which is supported by NIH award number S10OD028483. Finally, partial support was provided by the Magee-Womens Research Institute and Foundation, The Shear Family Foundation, and The Metastatic Breast Cancer Network.

2.
Mol Cancer Res ; 20(9): 1405-1419, 2022 09 02.
Article in English | MEDLINE | ID: mdl-35665642

ABSTRACT

No special-type breast cancer [NST; commonly known as invasive ductal carcinoma (IDC)] and invasive lobular carcinoma (ILC) are the two major histological subtypes of breast cancer with significant differences in clinicopathological and molecular characteristics. The defining pathognomonic feature of ILC is loss of cellular adhesion protein, E-cadherin (CDH1). We have previously shown that E-cadherin functions as a negative regulator of the IGF1R and propose that E-cadherin loss in ILC sensitizes cells to growth factor signaling that thus alters their sensitivity to growth factor-signaling inhibitors and their downstream activators. To investigate this potential therapeutic vulnerability, we generated CRISPR-mediated CDH1 knockout (CDH1 KO) IDC cell lines (MCF7, T47D, and ZR75.1) to uncover the mechanism by which loss of E-cadherin results in IGF pathway activation. CDH1 KO cells demonstrated enhanced invasion and migration that was further elevated in response to IGF1, serum and collagen I. CDH1 KO cells exhibited increased sensitivity to IGF resulting in elevated downstream signaling. Despite minimal differences in membranous IGF1R levels between wild-type (WT) and CDH1 KO cells, significantly higher ligand-receptor interaction was observed in the CDH1 KO cells, potentially conferring enhanced downstream signaling activation. Critically, increased sensitivity to IGF1R, PI3K, Akt, and MEK inhibitors was observed in CDH1 KO cells and ILC patient-derived organoids. IMPLICATIONS: Overall, this suggests that these targets require further exploration in ILC treatment and that CDH1 loss may be exploited as a biomarker of response for patient stratification.


Subject(s)
Breast Neoplasms , Carcinoma, Ductal, Breast , Carcinoma, Lobular , Breast Neoplasms/pathology , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/genetics , Carcinoma, Lobular/metabolism , Carcinoma, Lobular/pathology , Female , Humans , Receptor, IGF Type 1/genetics , Receptor, IGF Type 1/metabolism , Signal Transduction
3.
Nat Commun ; 13(1): 514, 2022 01 26.
Article in English | MEDLINE | ID: mdl-35082299

ABSTRACT

The molecular events and transcriptional plasticity driving brain metastasis in clinically relevant breast tumor subtypes has not been determined. Here we comprehensively dissect genomic, transcriptomic and clinical data in patient-matched longitudinal tumor samples, and unravel distinct transcriptional programs enriched in brain metastasis. We report on subtype specific hub genes and functional processes, central to disease-affected networks in brain metastasis. Importantly, in luminal brain metastases we identify homologous recombination deficiency operative in transcriptomic and genomic data with recurrent breast mutational signatures A, F and K, associated with mismatch repair defects, TP53 mutations and homologous recombination deficiency (HRD) respectively. Utilizing PARP inhibition in patient-derived brain metastatic tumor explants we functionally validate HRD as a key vulnerability. Here, we demonstrate a functionally relevant HRD evident at genomic and transcriptomic levels pointing to genomic instability in breast cancer brain metastasis which is of potential translational significance.


Subject(s)
Brain Neoplasms/genetics , Brain Neoplasms/metabolism , Breast Neoplasms/genetics , Breast Neoplasms/metabolism , Neoplasm Metastasis , Adult , Breast , Female , Gene Regulatory Networks , Genes, p53/genetics , Humans , Middle Aged , Mutation , Poly(ADP-ribose) Polymerase Inhibitors/pharmacology , Transcriptome
4.
Cancer Res ; 81(2): 268-281, 2021 01 15.
Article in English | MEDLINE | ID: mdl-33148662

ABSTRACT

Invasive lobular breast carcinoma (ILC), one of the major breast cancer histologic subtypes, exhibits unique features compared with the well-studied ductal cancer subtype (IDC). The pathognomonic feature of ILC is loss of E-cadherin, mainly caused by inactivating mutations, but the contribution of this genetic alteration to ILC-specific molecular characteristics remains largely understudied. To profile these features transcriptionally, we conducted single-cell RNA sequencing on a panel of IDC and ILC cell lines, and an IDC cell line (T47D) with CRISPR-Cas9-mediated E-cadherin knockout (KO). Inspection of intracell line heterogeneity illustrated genetically and transcriptionally distinct subpopulations in multiple cell lines and highlighted rare populations of MCF7 cells highly expressing an apoptosis-related signature, positively correlated with a preadaptation signature to estrogen deprivation. Investigation of E-cadherin KO-induced alterations showed transcriptomic membranous systems remodeling, elevated resemblance to ILCs in regulon activation, and increased sensitivity to IFNγ-mediated growth inhibition via activation of IRF1. This study reveals single-cell transcriptional heterogeneity in breast cancer cell lines and provides a resource to identify drivers of cancer progression and drug resistance. SIGNIFICANCE: This study represents a key step towards understanding heterogeneity in cancer cell lines and the role of E-cadherin depletion in contributing to the molecular features of invasive lobular breast carcinoma.


Subject(s)
Biomarkers, Tumor/genetics , Breast Neoplasms/pathology , Carcinoma, Ductal, Breast/pathology , Carcinoma, Lobular/pathology , Gene Expression Regulation, Neoplastic , Single-Cell Analysis/methods , Transcriptome , Antigens, CD/genetics , Antigens, CD/metabolism , Breast Neoplasms/genetics , Cadherins/antagonists & inhibitors , Cadherins/genetics , Cadherins/metabolism , Carcinoma, Ductal, Breast/genetics , Carcinoma, Lobular/genetics , Female , Humans , Mutation , Prognosis , Tumor Cells, Cultured
5.
Sci Rep ; 10(1): 11487, 2020 07 13.
Article in English | MEDLINE | ID: mdl-32661241

ABSTRACT

Invasive lobular carcinoma (ILC) is a histological subtype of breast cancer with distinct molecular and clinical features from the more common subtype invasive ductal carcinoma (IDC). ILC cells exhibit anchorage-independent growth in ultra-low attachment (ULA) suspension cultures, which is largely attributed to the loss of E-cadherin. In addition to anoikis resistance, herein we show that human ILC cell lines exhibit enhanced cell proliferation in ULA cultures as compared to IDC cells. Proteomic comparison of ILC and IDC cell lines identified induction of PI3K/Akt and p90-RSK pathways specifically in ULA culture in ILC cells. Further transcriptional profiling uncovered unique upregulation of the inhibitors of differentiation family transcription factors ID1 and ID3 in ILC ULA culture, the knockdown of which diminished the anchorage-independent growth of ILC cell lines through cell cycle arrest. We find that ID1 and ID3 expression is higher in human ILC tumors as compared to IDC, correlated with worse prognosis uniquely in patients with ILC and associated with upregulation of angiogenesis and matrisome-related genes. Altogether, our comprehensive study of anchorage independence in human ILC cell lines provides mechanistic insights and clinical implications for metastatic dissemination of ILC and implicates ID1 and ID3 as novel drivers and therapeutic targets for lobular breast cancer.


Subject(s)
Breast Neoplasms/genetics , Carcinoma, Lobular/genetics , Proteomics , Transcriptome/genetics , Autoantigens/genetics , Breast Neoplasms/pathology , Cadherins/genetics , Carcinoma, Lobular/pathology , Cell Differentiation/genetics , Female , Gene Expression Regulation, Neoplastic/genetics , Humans , Inhibitor of Differentiation Protein 1/genetics , Inhibitor of Differentiation Proteins/genetics , Intracellular Signaling Peptides and Proteins/genetics , Membrane Proteins/genetics , Middle Aged , Neoplasm Invasiveness/genetics , Neoplasm Invasiveness/pathology , Neoplasm Proteins/genetics , Phosphatidylinositol 3-Kinases/genetics , Proto-Oncogene Proteins c-akt/genetics , Ribosomal Protein S6 Kinases, 90-kDa/genetics , Signal Transduction/genetics
6.
Dev Biol ; 463(1): 77-87, 2020 07 01.
Article in English | MEDLINE | ID: mdl-32376245

ABSTRACT

Breast tumors display tremendous heterogeneity in part due to varying molecular alterations, divergent cells of origin, and differentiation. Understanding where and how this heterogeneity develops is likely important for effective breast cancer eradication. Insulin-like growth factor (IGF) signaling is critical for normal mammary gland development and function, and has an established role in tumor development and resistance to therapy. Here we demonstrate that constitutive activation of the IGF1 receptor (IGF1R) influences lineage differentiation during mammary tumorigenesis. Transgenic IGF1R constitutive activation promotes tumors with mixed histologies, multiple cell lineages and an expanded bi-progenitor population. In these tumors, IGF1R expands the luminal-progenitor population while influencing myoepithelial differentiation. Mammary gland transplantation with IGF1R-infected mammary epithelial cells (MECs) resulted in hyperplastic, highly differentiated outgrowths and attenuated reconstitution. Restricting IGF1R constitutive activation to luminal versus myoepithelial lineage-sorted MECs resulted in ductal reconstitutions co-expressing high IGF1R levels in the opposite lineage of origin. Using in vitro models, IGF1R constitutively activated MCF10A cells showed increased mammosphere formation and CD44+/CD24-population, which was dependent upon Snail and NFκB signaling. These results suggest that IGF1R expands luminal progenitor populations while also stimulating myoepithelial cell differentiation. This ability to influence lineage differentiation may promote heterogeneous mammary tumors, and have implications for clinical treatment.


Subject(s)
Breast Neoplasms/metabolism , Cell Differentiation/physiology , Receptor, IGF Type 1/metabolism , Animals , Breast/cytology , Breast/metabolism , Cell Line, Tumor , Cell Lineage/physiology , Cell Transformation, Neoplastic/metabolism , Epithelial Cells/cytology , Female , Humans , Insulin-Like Growth Factor I/metabolism , Mammary Glands, Animal/cytology , Mammary Glands, Animal/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , NIH 3T3 Cells , Receptor, IGF Type 1/physiology , Signal Transduction , Stem Cells/cytology
SELECTION OF CITATIONS
SEARCH DETAIL
...