Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 14(1): 10483, 2024 05 07.
Article in English | MEDLINE | ID: mdl-38714764

ABSTRACT

Automated machine learning (AutoML) allows for the simplified application of machine learning to real-world problems, by the implicit handling of necessary steps such as data pre-processing, feature engineering, model selection and hyperparameter optimization. This has encouraged its use in medical applications such as imaging. However, the impact of common parameter choices such as the number of trials allowed, and the resolution of the input images, has not been comprehensively explored in existing literature. We therefore benchmark AutoKeras (AK), an open-source AutoML framework, against several bespoke deep learning architectures, on five public medical datasets representing a wide range of imaging modalities. It was found that AK could outperform the bespoke models in general, although at the cost of increased training time. Moreover, our experiments suggest that a large number of trials and higher resolutions may not be necessary for optimal performance to be achieved.


Subject(s)
Machine Learning , Humans , Image Processing, Computer-Assisted/methods , Diagnostic Imaging/methods , Deep Learning , Algorithms
2.
J Med Internet Res ; 25: e49949, 2023 10 12.
Article in English | MEDLINE | ID: mdl-37824185

ABSTRACT

Deep learning-based clinical imaging analysis underlies diagnostic artificial intelligence (AI) models, which can match or even exceed the performance of clinical experts, having the potential to revolutionize clinical practice. A wide variety of automated machine learning (autoML) platforms lower the technical barrier to entry to deep learning, extending AI capabilities to clinicians with limited technical expertise, and even autonomous foundation models such as multimodal large language models. Here, we provide a technical overview of autoML with descriptions of how autoML may be applied in education, research, and clinical practice. Each stage of the process of conducting an autoML project is outlined, with an emphasis on ethical and technical best practices. Specifically, data acquisition, data partitioning, model training, model validation, analysis, and model deployment are considered. The strengths and limitations of available code-free, code-minimal, and code-intensive autoML platforms are considered. AutoML has great potential to democratize AI in medicine, improving AI literacy by enabling "hands-on" education. AutoML may serve as a useful adjunct in research by facilitating rapid testing and benchmarking before significant computational resources are committed. AutoML may also be applied in clinical contexts, provided regulatory requirements are met. The abstraction by autoML of arduous aspects of AI engineering promotes prioritization of data set curation, supporting the transition from conventional model-driven approaches to data-centric development. To fulfill its potential, clinicians must be educated on how to apply these technologies ethically, rigorously, and effectively; this tutorial represents a comprehensive summary of relevant considerations.


Subject(s)
Artificial Intelligence , Machine Learning , Humans , Image Processing, Computer-Assisted , Educational Status , Benchmarking
3.
Nat Med ; 29(8): 1930-1940, 2023 08.
Article in English | MEDLINE | ID: mdl-37460753

ABSTRACT

Large language models (LLMs) can respond to free-text queries without being specifically trained in the task in question, causing excitement and concern about their use in healthcare settings. ChatGPT is a generative artificial intelligence (AI) chatbot produced through sophisticated fine-tuning of an LLM, and other tools are emerging through similar developmental processes. Here we outline how LLM applications such as ChatGPT are developed, and we discuss how they are being leveraged in clinical settings. We consider the strengths and limitations of LLMs and their potential to improve the efficiency and effectiveness of clinical, educational and research work in medicine. LLM chatbots have already been deployed in a range of biomedical contexts, with impressive but mixed results. This review acts as a primer for interested clinicians, who will determine if and how LLM technology is used in healthcare for the benefit of patients and practitioners.


Subject(s)
Artificial Intelligence , Medicine , Humans , Language , Software , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...