Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 258: 119450, 2024 Jun 18.
Article in English | MEDLINE | ID: mdl-38901812

ABSTRACT

The fruit Pyrus communis, owing to its presence of phenolics and flavonoids, was chosen for its nanoparticle's reducing and stabilizing properties. Furthermore, the zinc metal may be nano-absorbed by the human body. As a result, the study involves synthesizing zinc oxide nanoparticles (ZnO NPs) from P. communis fruit extract using the green method. The synthesized nanoparticle was examined with a UV-visible spectrophotometer, Fourier Transform Infrared Spectroscopy (FTIR), Scanning Electron Microscopy (SEM), and Dynamic Light Scattering (DLS). When absorption studies were performed with a UV-visible spectrophotometer, the nanoparticle exhibited a blue shift. The FTIR spectrum revealed the molecular groups present in both the fruit extract and metal. In the SEM analysis, the ZnO NPs appeared as spherical particles, agglomerated together, and of nano-size. The larger size of the ZnO NPs in DLS can be attributed to their ability to absorb water. After characterization, nanoparticles were tested for anti-diabetic (α-amylase and yeast glucose uptake activity) and anti-microbial properties. The α-amylase inhibition percentage was 46.46 ± 0.15% for 100 µg/mL, which was comparable to the acarbose inhibition percentage of 50.58 ± 0.67% at the same concentration. The yeast glucose uptake activity was 64.24 ± 0.80% at 20 mM glucose concentration, which was comparable to the standard of 78.03 ± 0.80. The nanoparticle was more effective against Gram-negative bacteria Shigella sp. and Salmonella typhi than against Gram-positive bacteria Bacillus cereus and Streptococcus pneumoniae.

2.
Environ Res ; 251(Pt 2): 118729, 2024 Jun 15.
Article in English | MEDLINE | ID: mdl-38492832

ABSTRACT

The study was carried out to evaluate the effectiveness of the Aristolochia bracteolata water flower extract-mediated AgNPs synthesis and assess their antimicrobial potential. According to the experimental and analytical results, A. bracteolata flower extract can produce valuable AgNPs. The characteristic features of these AgNPs were assessed with UV-visible spectrophotometer, Fourier transform-infrared spectroscopy, Transmission Electron Microscope, Scanning Electron Microscopy, as well as. Under UV-vis. spectrum results, showed major peak at 430 nm and recorded essential functional groups responsible for reducing, capping, and stabilizing AgNPs by FT-IR analysis. In addition, the size and shape of the synthesized AgNPs were found as 21.11-25.17 nm and spherical/octahedral shape. The A. bracteolata fabricated NPs showed remarkable antimicrobial activity against fish bacterial pathogens (V. parahaemolytics, Serratia sp., B. subtilis, and E. coli) as well as common fungal pathogens (A. niger, C. albicans, A. flavus, and A. terreus) at the quantity of 100 µg mL-1 than positive controls. Nevertheless, it was not effective against human bacterial pathogens. It concludes that AgNPs synthesized from A. bracteolata aqueous flower extract have excellent antimicrobial activity and may have a variety of biomedical applications.


Subject(s)
Anti-Infective Agents , Antioxidants , Aristolochia , Flowers , Metal Nanoparticles , Plant Extracts , Plant Extracts/chemistry , Plant Extracts/pharmacology , Flowers/chemistry , Metal Nanoparticles/chemistry , Antioxidants/pharmacology , Antioxidants/chemistry , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Aristolochia/chemistry , Silver/chemistry , Silver/pharmacology , Bacteria/drug effects
3.
Chemosphere ; 323: 138179, 2023 May.
Article in English | MEDLINE | ID: mdl-36849022

ABSTRACT

In this study, aqueous and methanol extracts of Morinda coreia (MC) leaves were tested for antioxidant and antibacterial activity under in vitro conditions. Phytochemical analysis using UPLC-ESI-MS revealed the presence of phenolics, flavonoids, alkaloids, glycosides, amino acids, proteins, saponins, and tannins. Under in vitro conditions, antioxidant test using DPPH, ABTS, and reducing power demonstrated that the plant leaves play a crucial role in antioxidant activity compared to the commercial antioxidant butylated hydroxytoluene (BHT). The ABTS and DPPH free radical scavenging activities showed that the IC50 values of the M. coreia methanol extract were 26.35 µg/mL and 200.23 µg/mL, respectively. The methanol extract of M. coreia contained higher levels of total phenols and flavonoids and higher free radical scavenging capacity than the aqueous extract. FTIR analysis of the methanol extract showed a substantial number of phenols in the functional groups of M. coreia leaves. The well diffusion assay using the methanolic extract of M. coreia (200 µg/mL) leaves showed antibacterial activity against Pseudomonas aeruginosa (19 ± 0.85 mm), Proteus sp. (20 ± 0.97 mm), Streptococcus sp. (21 ± 1.29 mm), and Enterobacter sp. (17 ± 0.2 mm). Thus, the present study revealed that the antibacterial and antioxidant activity of M. coreia leaf extract was due to the presence of 18 unknown and 15 primary known polyphenols.


Subject(s)
Antioxidants , Morinda , Antioxidants/analysis , Plant Extracts/pharmacology , Plant Extracts/chemistry , Methanol , Tandem Mass Spectrometry , Flavonoids/analysis , Anti-Bacterial Agents/pharmacology , Phenols/analysis , Free Radicals , Plant Leaves/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...