Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Arab J Sci Eng ; 46(1): 93-102, 2021.
Article in English | MEDLINE | ID: mdl-32837814

ABSTRACT

2019-nCoV is a virulent virus belonging to the coronavirus family that caused the new pneumonia (COVID-19) which has spread internationally very rapidly and has become pandemic. In this research paper, we set forward a statistical model called SIR-Poisson that predicts the evolution and the global spread of infectious diseases. The proposed SIR-Poisson model is able to predict the range of the infected cases in a future period. More precisely, it is used to infer the transmission of the COVID-19 in the three Maghreb Central countries (Tunisia, Algeria, and Morocco). Using the SIR-Poisson model and based on daily reported disease data, since its emergence until end April 2020, we attempted to predict the future disease period over 60 days. The estimated average number of contacts by an infected individual with others was around 2 for Tunisia and 3 for Algeria and Morocco. Relying on inferred scenarios, although the pandemic situation would tend to decline, it has not ended. From this perspective, the risk of COVID-19 spreading still exists after the deconfinement act. It is necessary, therefore, to carry on the containment until the estimated infected number achieves 0.

2.
J Hazard Mater ; 382: 121119, 2020 01 15.
Article in English | MEDLINE | ID: mdl-31494532

ABSTRACT

This study investigates the performance of the combination of biological pre-treatment with Kefir grains (KGs) and photocatalytic process using Ag-doped TiO2 nanoparticles (NPs) for the simultaneous removal of toxic pollutants from landfill leachate (LFL). After 5 days of 1% (w/v) KGs pre-treatment at 37 °C, TOC, COD, NH4+-N, and PO43- removal rates were 93, 83.33, 70 and 88.25%, respectively. The removal efficiencies were found to be 100, 94, 62.5, 53.16 and 47.52 % for Cd, Ni, Zn, Mn and Cu, respectively. The optimal conditions of Ag-doped TiO2 photocatalytic process were optimized using Box-Behnken design and response surface methodology (BBD-RSM) to enhance the quality of pre-treated LFL. Interestingly, Ag-doped TiO2 photocatalytic process increases the overall removal efficiencies to 98, 96, 85 and 93% of TOC, COD, NH4+-N, and PO43-, respectively. Furthermore, the removal efficiency of toxic heavy metals was gradually improved. In addition, KGs and Ag-doped TiO2 exhibited excellent recyclability showing the potential of combined biological/photocatalytic process to treat hazardous LFL.


Subject(s)
Ammonium Compounds/chemistry , Kefir/microbiology , Metals, Heavy/chemistry , Nanoparticles/chemistry , Phosphates/chemistry , Titanium/chemistry , Water Pollutants, Chemical/chemistry , Ammonium Compounds/metabolism , Biodegradation, Environmental , Biological Oxygen Demand Analysis , Catalysis , Light , Metals, Heavy/metabolism , Nanoparticles/radiation effects , Phosphates/metabolism , Photochemical Processes , Titanium/radiation effects , Tunisia , Waste Disposal Facilities , Water Pollutants, Chemical/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...