Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 9(10)2020 Oct 19.
Article in English | MEDLINE | ID: mdl-33086523

ABSTRACT

Upland cotton (Gossypium hirsutum L.) is the main natural fiber crop worldwide and is an essential source of seed oil and biofuel products. Many abiotic stresses, such as drought and salinity, constrain cotton production. Thioredoxins (TRXs) are a group of small ubiquitous proteins that are widely distributed among organisms. TRXs play a crucial role in regulating diverse functions during plant growth and development. In the present study, a novel GhTRX134 gene was characterized and overexpressed in Arabidopsis and silenced in cotton under drought stress. Furthermore, the proline content and enzyme activity levels were measured in transgenic plants and wild-type (Wt) plants under drought and salt stress. The results revealed that the overexpression of GhTRX134 enhanced abiotic stress tolerance. When GhTRX134 was silenced, cotton plants become more sensitive to drought. Taken together, these findings confirmed that the overexpression of GhTRX134 improved drought and salt tolerance in Arabidopsis plants. Therefore, the GhTRX134 gene can be transformed into cotton plants to obtain transgenic lines for more functional details.

2.
Front Plant Sci ; 9: 1684, 2018.
Article in English | MEDLINE | ID: mdl-30519251

ABSTRACT

WRKY transcription factors have diverse functions in regulating stress response, leaf senescence, and plant growth and development. However, knowledge of the group IId WRKY subfamily in cotton is largely absent. This study identified 34 group IId WRKY genes in the Gossypium hirsutum genome, and their genomic loci were investigated. Members clustered together in the phylogenetic tree had similar motif compositions and gene structural features, revealing similarity and conservation within group IId WRKY genes. During the evolutionary process, 14 duplicated genes appeared to undergo purification selection. Public RNA-seq data were used to examine the expression patterns of group IId WRKY genes in various tissues and under drought and salt stress conditions. Ten highly expressed genes were identified, and the ten candidate genes revealed distinct expression patterns under drought and salt treatments by qRT-PCR analysis. Among them, Gh_A11G1801 was used for functional characterization. GUS activity was differentially induced by various stresses in Gh_A11G1801p::GUS transgenic Arabidopsis plants. The virus-induced gene silencing (VIGS) of Gh_A11G1801 resulted in drought sensitivity in cotton plants, which was accompanied by elevated malondialdehyde (MDA) content and reduced catalase (CAT) content. Taken together, these findings obtained in this study provide valuable resources for further studying group IId WRKY genes in cotton. Our results also enrich the gene resources for the genetic improvements of cotton varieties that are suitable for growth in stressful conditions.

3.
Physiol Mol Biol Plants ; 24(5): 729-739, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30150850

ABSTRACT

Leaf senescence is defined as a deterioration process that continues to the final developmental stage of leaf. This process is usually regulated by both external and internal factors. There are about 5356 senescence associated genes belonging to 44 plant species. A great number of these genes were identified in Arabidopsis. Leaf senescence can be regulated by many transcription factors. In this study, nine gene families were selected according to their expression levels during leaf senescence from our laboratory database. Phylogenetic tree was constructed by MEGA6. Cultivated cotton CCRI-10 seeds were sown in the experimental field of Institute of Cotton Research of CAAS for profiling and leaf development stages analysis. For abiotic (drought and salt) stress and phytohormone (ABA, SA, ET and JA) treatments, CCRI-10 seeds were sown in potting soil at 25 °C in a chamber room. Total RNA was isolated from various samples and the cDNA prepared for qRT-PCR. The comparative CT method was applied to calculate the relative expression levels of genes. For phylogenetic tree, nine cotton genes were divided into two groups, most of homologous genes in previous studies showed roles in phytohormones and abiotic stress. Expression profiling of the nine genes showed different patterns of tissue specific expression. In leaf development stages, majority of cotton genes showed high expression in early and complete senescence stage. Furthermore, most of cotton genes have positive or negative response to phytohormones and abiotic stress. Based on the results of this study, we found four cotton genes CotAD_07559, CotAD_37422, CotAD_21204 and CotAD_54353 as candidate genes for leaves senescence and abiotic stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...