Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Int Immunopharmacol ; 90: 107193, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33246827

ABSTRACT

Microvascular complications of diabetes mellitus are progressively significant reasons for mortality. Metformin (MET) is considered as the first-line therapy for type 2 diabetes patients, and may be especially beneficial in cases of diabetic retinopathy although the precise mechanisms of MET action are not fully elucidated. The current study was designed to inspect the antioxidant and modulatory actions of MET on DRET in streptozotocin-induced diabetic rats. The effect of MET on the toll-like receptor 4/nuclear factor kappa B (TLR4/NFkB), inflammatory burden and glutamate excitotoxicity was assessed. Twenty-four male rats were assigned to four experimental groups: (1) Vehicle group, (2) Diabetic control: developed diabetes by injection of streptozotocin (60 mg/kg, i.p.). (3&4) Diabetic + MET group: diabetic rats were left for 9 weeks without treatment and then received oral MET 100 and 200 mg/kg for 6 weeks. Retinal samples were utilized in biochemical, histological, immunohistochemical and electron microscopic studies. MET administration significantly decreased retinal level of insulin growth factor and significantly suppressed the diabetic induced increase of malondialdehyde, glutamate, tumor necrosis factor-α and vascular endothelial growth factor (VEGF). Further, MET decreased the retinal mRNA expression of NFkB, tumor necrosis factor-α and TLR4 in diabetic rats. The current findings shed the light on MET's efficacy as an adjuvant therapy to hinder the development of diabetic retinopathy, at least partly, via inhibition of oxidative stress-induced NFkB/TLR4 pathway and suppression of glutamate excitotoxicity.


Subject(s)
Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/prevention & control , Glutamic Acid/metabolism , Hypoglycemic Agents/pharmacology , Metformin/pharmacology , NF-kappa B/metabolism , Retina/drug effects , Toll-Like Receptor 4/metabolism , Animals , Diabetes Mellitus, Experimental/chemically induced , Diabetes Mellitus, Experimental/metabolism , Diabetic Retinopathy/etiology , Diabetic Retinopathy/metabolism , Diabetic Retinopathy/pathology , Male , NF-kappa B/genetics , Oxidative Stress/drug effects , Rats, Wistar , Retina/metabolism , Retina/pathology , Signal Transduction , Streptozocin , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism , Vascular Endothelial Growth Factor A/metabolism
2.
Life Sci ; 262: 118467, 2020 Dec 01.
Article in English | MEDLINE | ID: mdl-32961236

ABSTRACT

Donepezil (DNPZ) has shown neuroprotective effect in many disorders. The current study tested the putative retinoprotection provided by donepezil in mouse diabetic retinopathy. Swiss albino mice were allocated to, 1] saline control, 2] diabetic, 3&4] diabetic+DNPZ (1 or 4 mg/kg). After induction of diabetes, mice were maintained for 8 weeks then DNPZ therapy was launched for 28 days. Retinas were isolated and used for histopathology and immunohistochemistry for caspase 3 and the anti-apoptotic protein, B-cell lymphoma 2 (BCl2). Retinas were examined for glutamate, acetylcholine and oxidation markers. Western blot analysis measured inflammatory cytokines, N-methyl-d-aspartate receptors (NMDARs), phosphorylated and total phosphatidylinositol-3 kinase and mTOR, BCl2 and cleaved caspase 3. Significant histopathological changes and decreased thickness were found in diabetic retinas (125.52 ± 2.85 vs. 157.15 ± 7.55 in the saline group). In addition, retinal glutamate (2.39-fold), inflammatory cytokines and NMDARs proteins (4.9-fold) were higher in the diabetic retinas. Western blot analysis revealed low ratio of phosphorylated/total PI3K (0.21 ± 0.043 vs. 1 ± 0.005) and mTOR (0.18 ± 0.04 vs. 1 ± 0.005), low BCl2 (0.28 ± 0.06 vs. 1 ± 0.005) and upregulated cleaved caspase 3 (5.18 ± 1.27 vs. 1 ± 0.05 in the saline group) versus the saline control. DNPZ ameliorated the histopathologic manifestations and to prevent the decrease in retinal thickness. DNPZ (4 mg/kg) improved phosphorylation of PI3K (0.76 ± 0.12 vs. 0.21 ± 0.04) and mTOR (0.59 ± 0.09 vs. 0.18 ± 0.04) and increased BCl2 (0.75 ± 0.08 vs. 0.28 ± 0.06) versus the diabetic control group. This study explained the retinoprotective effect of DNPZ in mouse diabetic retinopathy and highlighted that mitigation of excitotoxicity, improving phosphorylation of PI3K/mTOR and increasing BCl2 contribute to this effect.


Subject(s)
Cholinesterase Inhibitors/pharmacology , Diabetes Mellitus, Experimental/drug therapy , Diabetic Retinopathy/prevention & control , Donepezil/pharmacology , Animals , Diabetes Mellitus, Experimental/complications , Male , Mice , Phosphatidylinositol 3-Kinase/metabolism , Phosphorylation/drug effects , Proto-Oncogene Proteins c-bcl-2/metabolism , TOR Serine-Threonine Kinases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...