Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
NPJ Digit Med ; 6(1): 28, 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36823165

ABSTRACT

In the field of emergency medicine (EM), the use of decision support tools based on artificial intelligence has increased markedly in recent years. In some cases, data are omitted deliberately and thus constitute "data not purposely collected" (DNPC). This accepted information bias can be managed in various ways: dropping patients with missing data, imputing with the mean, or using automatic techniques (e.g., machine learning) to handle or impute the data. Here, we systematically reviewed the methods used to handle missing data in EM research. A systematic review was performed after searching PubMed with the query "(emergency medicine OR emergency service) AND (artificial intelligence OR machine learning)". Seventy-two studies were included in the review. The trained models variously predicted diagnosis in 25 (35%) publications, mortality in 21 (29%) publications, and probability of admission in 21 (29%) publications. Eight publications (11%) predicted two outcomes. Only 15 (21%) publications described their missing data. DNPC constitute the "missing data" in EM machine learning studies. Although DNPC have been described more rigorously since 2020, the descriptions in the literature are not exhaustive, systematic or homogeneous. Imputation appears to be the best strategy but requires more time and computational resources. To increase the quality and the comparability of studies, we recommend inclusion of the TRIPOD checklist in each new publication, summarizing the machine learning process in an explicit methodological diagram, and always publishing the area under the receiver operating characteristics curve-even when it is not the primary outcome.

2.
Article in English | MEDLINE | ID: mdl-35955022

ABSTRACT

BACKGROUND: During the coronavirus disease 2019 (COVID-19) pandemic, calculation of the number of emergency department (ED) beds required for patients with vs. without suspected COVID-19 represented a real public health problem. In France, Amiens Picardy University Hospital (APUH) developed an Artificial Intelligence (AI) project called "Prediction of the Patient Pathway in the Emergency Department" (3P-U) to predict patient outcomes. MATERIALS: Using the 3P-U model, we performed a prospective, single-center study of patients attending APUH's ED in 2020 and 2021. The objective was to determine the minimum and maximum numbers of beds required in real-time, according to the 3P-U model. Results A total of 105,457 patients were included. The area under the receiver operating characteristic curve (AUROC) for the 3P-U was 0.82 for all of the patients and 0.90 for the unambiguous cases. Specifically, 38,353 (36.4%) patients were flagged as "likely to be discharged", 18,815 (17.8%) were flagged as "likely to be admitted", and 48,297 (45.8%) patients could not be flagged. Based on the predicted minimum number of beds (for unambiguous cases only) and the maximum number of beds (all patients), the hospital management coordinated the conversion of wards into dedicated COVID-19 units. DISCUSSION AND CONCLUSIONS: The 3P-U model's AUROC is in the middle of range reported in the literature for similar classifiers. By considering the range of required bed numbers, the waste of resources (e.g., time and beds) could be reduced. The study concludes that the application of AI could help considerably improve the management of hospital resources during global pandemics, such as COVID-19.


Subject(s)
COVID-19 , Pandemics , Artificial Intelligence , COVID-19/epidemiology , Emergency Service, Hospital , Hospitals, University , Humans , Prospective Studies , SARS-CoV-2
3.
JMIR Hum Factors ; 8(4): e27706, 2021 Oct 25.
Article in English | MEDLINE | ID: mdl-34694238

ABSTRACT

BACKGROUND: The early diagnosis of autism spectrum disorder (ASD) is highly desirable but remains a challenging task, which requires a set of cognitive tests and hours of clinical examinations. In addition, variations of such symptoms exist, which can make the identification of ASD even more difficult. Although diagnosis tests are largely developed by experts, they are still subject to human bias. In this respect, computer-assisted technologies can play a key role in supporting the screening process. OBJECTIVE: This paper follows on the path of using eye tracking as an integrated part of screening assessment in ASD based on the characteristic elements of the eye gaze. This study adds to the mounting efforts in using eye tracking technology to support the process of ASD screening. METHODS: The proposed approach basically aims to integrate eye tracking with visualization and machine learning. A group of 59 school-aged participants took part in the study. The participants were invited to watch a set of age-appropriate photographs and videos related to social cognition. Initially, eye-tracking scanpaths were transformed into a visual representation as a set of images. Subsequently, a convolutional neural network was trained to perform the image classification task. RESULTS: The experimental results demonstrated that the visual representation could simplify the diagnostic task and also attained high accuracy. Specifically, the convolutional neural network model could achieve a promising classification accuracy. This largely suggests that visualizations could successfully encode the information of gaze motion and its underlying dynamics. Further, we explored possible correlations between the autism severity and the dynamics of eye movement based on the maximal information coefficient. The findings primarily show that the combination of eye tracking, visualization, and machine learning have strong potential in developing an objective tool to assist in the screening of ASD. CONCLUSIONS: Broadly speaking, the approach we propose could be transferable to screening for other disorders, particularly neurodevelopmental disorders.

4.
J Imaging ; 7(5)2021 May 03.
Article in English | MEDLINE | ID: mdl-34460679

ABSTRACT

Over the past decade, deep learning has achieved unprecedented successes in a diversity of application domains, given large-scale datasets. However, particular domains, such as healthcare, inherently suffer from data paucity and imbalance. Moreover, datasets could be largely inaccessible due to privacy concerns, or lack of data-sharing incentives. Such challenges have attached significance to the application of generative modeling and data augmentation in that domain. In this context, this study explores a machine learning-based approach for generating synthetic eye-tracking data. We explore a novel application of variational autoencoders (VAEs) in this regard. More specifically, a VAE model is trained to generate an image-based representation of the eye-tracking output, so-called scanpaths. Overall, our results validate that the VAE model could generate a plausible output from a limited dataset. Finally, it is empirically demonstrated that such approach could be employed as a mechanism for data augmentation to improve the performance in classification tasks.

5.
Annu Int Conf IEEE Eng Med Biol Soc ; 2019: 1417-1420, 2019 Jul.
Article in English | MEDLINE | ID: mdl-31946158

ABSTRACT

Autism spectrum disorder (ASD) is a lifelong condition characterized by social and communication impairments. This study attempts to apply unsupervised Machine Learning to discover clusters in ASD. The key idea is to learn clusters based on the visual representation of eye-tracking scanpaths. The clustering model was trained using compressed representations learned by a deep autoencoder. Our experimental results demonstrate a promising tendency of clustering structure. Further, the clusters are explored to provide interesting insights into the characteristics of the gaze behavior involved in autism.


Subject(s)
Autism Spectrum Disorder , Cluster Analysis , Humans , Unsupervised Machine Learning
SELECTION OF CITATIONS
SEARCH DETAIL
...