Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Pharm Biomed Anal ; 179: 112971, 2020 Feb 05.
Article in English | MEDLINE | ID: mdl-31771809

ABSTRACT

Continuous Manufacturing (CM) of pharmaceutical drug products is a rather new approach within the pharmaceutical industry. In the presented paper, a GMP continuous wet granulation line used for clinical production of solid dosage forms was investigated with a thorough monitoring strategy regarding process performance and robustness. The line was composed of the subsequent continuous unit operations feeding - twin-screw wet-granulation - fluid-bed drying - sieving and tableting; the formulation of a new pharmaceutical entity in development was selected for this study. In detail, a Design of Experiments (DoE) was used to evaluate the impact of the three main factors (amount of water, filling rate, and shear force in twin-screw granulator) on the tablet quality. The process was monitored via in-process control (IPC) tests (e.g. weight, hardness, disintegration, and loss-on-drying), Process Analytical Technologies (PAT), and through the analysis of the process parameters (multivariate process control). The tested formulation was very robust to the large process variation of the DoE: all IPC results were in specification, the PAT probes provided stable results for the content uniformity and no critical variations can be detected in the process parameters. An adequate monitoring strategy was presented and the robustness of the process with one formulation has been demonstrated. In summary, this continuous process in combination with smart formulation development allows the robust production of constant quality tablets. The synergy between PAT, process data science and IPC creates an adequate monitoring framework of the continuous manufacturing line.


Subject(s)
Drug Industry/methods , Pharmaceutical Preparations/administration & dosage , Technology, Pharmaceutical/methods , Chemistry, Pharmaceutical/methods , Excipients/chemistry , Hardness , Pharmaceutical Preparations/chemistry , Tablets , Water/chemistry
2.
J Pharm Sci ; 108(6): 2041-2055, 2019 06.
Article in English | MEDLINE | ID: mdl-30677419

ABSTRACT

In line with the ongoing shift from batch to continuous pharmaceutical production of solid oral dosage forms, a novel continuous fluid-bed dryer was developed. The forced feed nature of the Glatt GPCG2 CM fluid-bed dryer allows continuous, first-in-first-out drying of wet granulate materials based on its compartmentalized, rotating fluidizing chamber. The presented work aims to introduce the dryer's functionalities in detail, and to demonstrate that the rotating fluid-bed chambers facilitates a stable drying behavior, which ensures robust and repeatable residual moisture contents (loss-on-drying [LOD]) of the discharged granules. Furthermore, a mass and energy balance (MEB) is derived, based on the logged process values of the granulating and drying units. Two independent test experiments demonstrate that precise LOD prediction in real time is achievable by MEB to serve as an orthogonal process analytical technology method to common near-infrared spectroscopy. On average, MEB results differed by 0.36% LOD (absolute) from offline reference analyses, and by 0.61% LOD from predictions made with an in-house available near-infrared spectroscopy method. Furthermore, good correlation between the observed and expected thermal energy loss was found. The derived MEB is solely based on physical principles; hence it is product independent and transferable to other materials that are processed on the described equipment.


Subject(s)
Desiccation/instrumentation , Drug Compounding/instrumentation , Chemistry, Pharmaceutical/methods , Desiccation/methods , Drug Compounding/methods , Powders , Spectroscopy, Near-Infrared , Temperature
3.
J Pharm Biomed Anal ; 162: 101-111, 2019 Jan 05.
Article in English | MEDLINE | ID: mdl-30227355

ABSTRACT

The use of Near Infrared Spectroscopy (NIRS) as a fast and non-destructive technique was employed for the control and monitoring of the tableting step during a continuous manufacturing process. Two NIRS methods were optimized in order to in-line control the blend uniformity in the tablet feed frame and the API concentration of freshly pressed tablets prior the ejection. The novelty of this work first lies in the acquisition speed of NIR spectra reaching up to 70,000 tablets/h. Partial Least Square (PLS) regression was used as chemometric tool for the computation that resulted in excellent predictive calibration results. A coefficient of correlation (r) value of 0.99 was obtained for both probes. The root mean square error of calibration (RMSEC) and the root mean square error of prediction (RMSEP) were respectively 1.8% and 1.8% for active content in the tablet feeder and 2.2% and 2.3% for the tablet content. In addition, calibration performance and robustness of the methods were evaluated. Moreover several qualitative methods were proposed to monitor the tableting process in different stages of development (single wavelength, Principal Component Analysis, and Independent Component Analysis). In early phase development, the requirement/quality of the input material is not established yet; hence the use of a qualitative approach allows to confirm the suitability of the PAT methodology for in-process material monitoring & control. Later, the qualitative approach constitutes the foundation for the quantitative approach when input materials are fixed and larger production size occurs. The proposed strategy is a performant PAT tool for continuous manufacturing and a step forward to real time release.


Subject(s)
Diclofenac/chemistry , Excipients/chemistry , Spectroscopy, Near-Infrared , Technology, Pharmaceutical/methods , Diclofenac/standards , Drug Compounding , Excipients/standards , Least-Squares Analysis , Principal Component Analysis , Quality Control , Tablets , Technology, Pharmaceutical/standards , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...