Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Condens Matter ; 27(6): 064105, 2015 Feb 18.
Article in English | MEDLINE | ID: mdl-25563201

ABSTRACT

Nucleosomes have to open to allow access to DNA in transcription, replication, and DNA damage repair. Changes in DNA torsional strain (e.g. during transcription elongation) influence the accessibility of nucleosomal DNA. Here we investigated the effect of DNA supercoiling-induced torsional strain on nucleosome structure and stability by scanning force microscopy (SFM) and fluorescence correlation spectroscopy (FCS). Nucleosomes were reconstituted onto 2.7 kb DNA plasmids with varying superhelical densities. The SFM results show a clear dependence of the amount of DNA wrapped around the nucleosome core on the strength and type of supercoiling. Negative supercoiling led to smaller nucleosome opening angles as compared to relaxed or positively supercoiled DNA. FCS experiments show that nucleosomes reconstituted on negatively superhelical DNA are more resistant to salt-induced destabilization, as seen by reduced H2A-H2B dimer eviction from the nucleosome. Our results show that changes in DNA topology, e.g. during transcription elongation, affect the accessibility of nucleosomal DNA.


Subject(s)
DNA, Superhelical/chemistry , Nucleosomes/chemistry , Fluorescent Dyes/chemistry , Plasmids/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...