Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Neurol Genet ; 10(1): e200114, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38170145

ABSTRACT

Objectives: To investigate the etiology of cerebellar ataxia in an adult male patient. Methods: We performed standard neurologic assessment and genome sequencing of a 62-year-old man with rapidly progressive balance and gait abnormalities. Results: The propositus exhibited cognitive dysfunction, mild appendicular bradykinesia, prominent appendicular ataxia, dysarthria, and hypomimia with minimal dysautonomic symptoms. Nerve conduction studies showed mild peripheral sensory neuropathy and normal motor nerve conduction velocities. Brain imaging showed progressive cerebellar atrophy and gliosis of the olivopontocerebellar fibers, characterized by T2 hyperintensity within the pons. Genetic testing revealed a likely pathogenic germline variant in MFN2 (NM_014874: c.[838C>T];[=], p.(R280C)) in the GTPase domain (G) interface; pathogenic variants of MFN2 typically cause hereditary sensory and motor neuropathy VI or Charcot-Marie-Tooth disease 2A. The presence of progressive ataxia, "hot cross bun" sign, and dysautonomia has been associated with multiple system atrophy, cerebellar type (MSA-C). Discussion: We describe progressive cerebellar ataxia in an individual with a deleterious variant in MFN2. Our findings suggest that pathogenic variants in MFN2 can result in a spectrum of phenotypes including cerebellar ataxia with cerebellar-pontine atrophy in the absence of significant neuropathy and in a manner closely resembling MSA-C.

2.
Eur Heart J ; 44(35): 3357-3370, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37528649

ABSTRACT

AIMS: Calmodulinopathy due to mutations in any of the three CALM genes (CALM1-3) causes life-threatening arrhythmia syndromes, especially in young individuals. The International Calmodulinopathy Registry (ICalmR) aims to define and link the increasing complexity of the clinical presentation to the underlying molecular mechanisms. METHODS AND RESULTS: The ICalmR is an international, collaborative, observational study, assembling and analysing clinical and genetic data on CALM-positive patients. The ICalmR has enrolled 140 subjects (median age 10.8 years [interquartile range 5-19]), 97 index cases and 43 family members. CALM-LQTS and CALM-CPVT are the prevalent phenotypes. Primary neurological manifestations, unrelated to post-anoxic sequelae, manifested in 20 patients. Calmodulinopathy remains associated with a high arrhythmic event rate (symptomatic patients, n = 103, 74%). However, compared with the original 2019 cohort, there was a reduced frequency and severity of all cardiac events (61% vs. 85%; P = .001) and sudden death (9% vs. 27%; P = .008). Data on therapy do not allow definitive recommendations. Cardiac structural abnormalities, either cardiomyopathy or congenital heart defects, are present in 30% of patients, mainly CALM-LQTS, and lethal cases of heart failure have occurred. The number of familial cases and of families with strikingly different phenotypes is increasing. CONCLUSION: Calmodulinopathy has pleiotropic presentations, from channelopathy to syndromic forms. Clinical severity ranges from the early onset of life-threatening arrhythmias to the absence of symptoms, and the percentage of milder and familial forms is increasing. There are no hard data to guide therapy, and current management includes pharmacological and surgical antiadrenergic interventions with sodium channel blockers often accompanied by an implantable cardioverter-defibrillator.


Subject(s)
Calmodulin , Long QT Syndrome , Tachycardia, Ventricular , Child , Humans , Calmodulin/genetics , Death, Sudden, Cardiac/etiology , Long QT Syndrome/diagnosis , Long QT Syndrome/genetics , Mutation/genetics , Registries , Tachycardia, Ventricular/diagnosis , Tachycardia, Ventricular/genetics
3.
Am J Med Genet A ; 191(6): 1593-1598, 2023 06.
Article in English | MEDLINE | ID: mdl-36866832

ABSTRACT

The Notch proteins play key roles in cell fate determination during development. Germline pathogenic variants in NOTCH1 predispose to a spectrum of cardiovascular malformations including Adams-Oliver syndrome and a wide variety of isolated complex and simple congenital heart defects. The intracellular C-terminus of the single-pass transmembrane receptor encoded by NOTCH1 contains a transcriptional activating domain (TAD) required for target gene activation and a PEST domain (a sequence rich in proline, glutamic acid, serine, and threonine), regulating protein stability and turnover. We present a patient with a novel variant encoding a truncated NOTCH1 protein without the TAD and PEST domain (NM_017617.4: c.[6626_6629del];[=], p.(Tyr2209CysfsTer38)) and extensive cardiovascular abnormalities consistent with a NOTCH1-mediated mechanism. This variant fails to promote transcription of target genes as assessed by luciferase reporter assay. Given the roles of the TAD and PEST domains in NOTCH1 function and regulation, we hypothesize that loss of both the TAD and the PEST domain results in a stable, loss-of-function protein that acts as an antimorph through competition with wild-type NOTCH1.


Subject(s)
Ectodermal Dysplasia , Limb Deformities, Congenital , Scalp Dermatoses , Humans , Receptor, Notch1/genetics , Ectodermal Dysplasia/genetics , Scalp Dermatoses/congenital , Limb Deformities, Congenital/genetics
4.
Front Med (Lausanne) ; 9: 1071348, 2022.
Article in English | MEDLINE | ID: mdl-36714130

ABSTRACT

Genomic medicine, an emerging medical discipline, applies the principles of evolution, developmental biology, functional genomics, and structural genomics within clinical care. Enabling widespread adoption and integration of genomic medicine into clinical practice is key to achieving precision medicine. We delineate a biological framework defining diagnostic utility of genomic testing and map the process of genomic medicine to inform integration into clinical practice. This process leverages collaboration and collective cognition of patients, principal care providers, clinical genomic specialists, laboratory geneticists, and payers. We detail considerations for referral, triage, patient intake, phenotyping, testing eligibility, variant analysis and interpretation, counseling, and management within the utilitarian limitations of health care systems. To reduce barriers for clinician engagement in genomic medicine, we provide several decision-making frameworks and tools and describe the implementation of the proposed workflow in a prototyped electronic platform that facilitates genomic care. Finally, we discuss a vision for the future of genomic medicine and comment on areas for continued efforts.

5.
J Neurosci ; 39(1): 177-192, 2019 01 02.
Article in English | MEDLINE | ID: mdl-30377227

ABSTRACT

The CCCTC-binding factor (CTCF) is a central regulator of chromatin topology recently linked to neurodevelopmental disorders such as intellectual disability, autism, and schizophrenia. The aim of this study was to identify novel roles of CTCF in the developing mouse brain. We provide evidence that CTCF is required for the expression of the LIM homeodomain factor LHX6 involved in fate determination of cortical interneurons (CINs) that originate in the medial ganglionic eminence (MGE). Conditional Ctcf ablation in the MGE of mice of either sex leads to delayed tangential migration, abnormal distribution of CIN in the neocortex, a marked reduction of CINs expressing parvalbumin and somatostatin (Sst), and an increased number of MGE-derived cells expressing Lhx8 and other markers of basal forebrain projection neurons. Likewise, Ctcf-null MGE cells transplanted into the cortex of wild-type hosts generate fewer Sst-expressing CINs and exhibit lamination defects that are efficiently rescued upon reexpression of LHX6. Collectively, these data indicate that CTCF regulates the dichotomy between Lhx6 and Lhx8 to achieve correct specification and migration of MGE-derived CINs.SIGNIFICANCE STATEMENT This work provides evidence that CCCTC-binding factor (CTCF) controls an early fate decision point in the generation of cortical interneurons mediated at least in part by Lhx6. Importantly, the abnormalities described could reflect early molecular and cellular events that contribute to human neurological disorders previously linked to CTCF, including schizophrenia, autism, and intellectual disability.


Subject(s)
CCCTC-Binding Factor/physiology , Cerebral Cortex/physiology , Interneurons/physiology , Median Eminence/physiology , Animals , CCCTC-Binding Factor/genetics , Cell Count , Cell Movement/genetics , Cell Movement/physiology , Cerebral Cortex/cytology , Female , LIM-Homeodomain Proteins/biosynthesis , LIM-Homeodomain Proteins/genetics , Male , Median Eminence/cytology , Mice , Mice, Inbred C57BL , Neocortex/cytology , Neocortex/physiology , Nerve Tissue Proteins/biosynthesis , Nerve Tissue Proteins/genetics , Parvalbumins/metabolism , Somatostatin/metabolism , Telencephalon/cytology , Telencephalon/growth & development , Transcription Factors/biosynthesis , Transcription Factors/genetics , gamma-Aminobutyric Acid/physiology
6.
J Neurosci ; 35(37): 12903-16, 2015 Sep 16.
Article in English | MEDLINE | ID: mdl-26377475

ABSTRACT

The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility and kisspeptin (KP) is a potent trigger of GnRH secretion from GnRH neurons. KP signals via KISS1R, a Gαq/11-coupled receptor, and mice bearing a global deletion of Kiss1r (Kiss1r(-/-)) or a GnRH neuron-specific deletion of Kiss1r (Kiss1r(d/d)) display hypogonadotropic hypogonadism and infertility. KISS1R also signals via ß-arrestin, and in mice lacking ß-arrestin-1 or -2, KP-triggered GnRH secretion is significantly diminished. Based on these findings, we hypothesized that ablation of Gαq/11 in GnRH neurons would diminish but not completely block KP-triggered GnRH secretion and that Gαq/11-independent GnRH secretion would be sufficient to maintain fertility. To test this, Gnaq (encodes Gαq) was selectively inactivated in the GnRH neurons of global Gna11 (encodes Gα11)-null mice by crossing Gnrh-Cre and Gnaq(fl/fl);Gna11(-/-) mice. Experimental Gnaq(fl/fl);Gna11(-/-);Gnrh-Cre (Gnaq(d/d)) and control Gnaq(fl/fl);Gna11(-/-) (Gnaq(fl/fl)) littermate mice were generated and subjected to reproductive profiling. This process revealed that testicular development and spermatogenesis, preputial separation, and anogenital distance in males and day of vaginal opening and of first estrus in females were significantly less affected in Gnaq(d/d) mice than in previously characterized Kiss1r(-/-) or Kiss1r(d/d) mice. Additionally, Gnaq(d/d) males were subfertile, and although Gnaq(d/d) females did not ovulate spontaneously, they responded efficiently to a single dose of gonadotropins. Finally, KP stimulation triggered a significant increase in gonadotropins and testosterone levels in Gnaq(d/d) mice. We therefore conclude that the milder reproductive phenotypes and maintained responsiveness to KP and gonadotropins reflect Gαq/11-independent GnRH secretion and activation of the neuroendocrine-reproductive axis in Gnaq(d/d) mice. SIGNIFICANCE STATEMENT: The gonadotropin-releasing hormone (GnRH) is the master regulator of fertility. Over the last decade, several studies have established that the KISS1 receptor, KISS1R, is a potent trigger of GnRH secretion and inactivation of KISS1R on the GnRH neuron results in infertility. While KISS1R is best understood as a Gαq/11-coupled receptor, we previously demonstrated that it could couple to and signal via non-Gαq/11-coupled pathways. The present study confirms these findings and, more importantly, while it establishes Gαq/11-coupled signaling as a major conduit of GnRH secretion, it also uncovers a significant role for non-Gαq/11-coupled signaling in potentiating reproductive development and function. This study further suggests that by augmenting signaling via these pathways, GnRH secretion can be enhanced to treat some forms of infertility.


Subject(s)
GTP-Binding Protein alpha Subunits/deficiency , Gonadotropin-Releasing Hormone/physiology , Hypogonadism/physiopathology , Infertility, Female/physiopathology , Infertility, Male/physiopathology , Animals , Blastocyst/pathology , Embryonic Development , Female , GTP-Binding Protein alpha Subunits/physiology , Gene Expression Profiling , Genitalia, Female/pathology , Genitalia, Female/physiopathology , Genitalia, Male/pathology , Genitalia, Male/physiopathology , Gonadal Steroid Hormones/metabolism , Gonadotropin-Releasing Hormone/antagonists & inhibitors , Gonadotropins, Pituitary/metabolism , Gonadotropins, Pituitary/pharmacology , Hypogonadism/genetics , Hypogonadism/pathology , Hypothalamo-Hypophyseal System/physiopathology , Hypothalamus/pathology , Infertility, Female/embryology , Infertility, Female/genetics , Infertility, Male/embryology , Infertility, Male/genetics , Kisspeptins/pharmacology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Neurons/metabolism , Oligopeptides/pharmacology , Ovariectomy , Ovulation/drug effects , Peptide Fragments/pharmacology , Peptides/pharmacology , Phenotype , Receptors, G-Protein-Coupled , Receptors, Kisspeptin-1 , Spermatogenesis
7.
Endocrinology ; 155(8): 3065-78, 2014 Aug.
Article in English | MEDLINE | ID: mdl-24877624

ABSTRACT

The hypothalamic kisspeptin signaling system is a major positive regulator of the reproductive neuroendocrine axis, and loss of Kiss1 in the mouse results in infertility, a condition generally attributed to its hypogonadotropic hypogonadism. We demonstrate that in Kiss1(-/-) female mice, acute replacement of gonadotropins and estradiol restores ovulation, mating, and fertilization; however, these mice are still unable to achieve pregnancy because embryos fail to implant. Progesterone treatment did not overcome this defect. Kiss1(+/-) embryos transferred to a wild-type female mouse can successfully implant, demonstrating the defect is due to maternal factors. Kisspeptin and its receptor are expressed in the mouse uterus, and we suggest that it is the absence of uterine kisspeptin signaling that underlies the implantation failure. This absence, however, does not prevent the closure of the uterine implantation chamber, proper alignment of the embryo, and the ability of the uterus to undergo decidualization. Instead, the loss of Kiss1 expression specifically disrupts embryo attachment to the uterus. We observed that on the day of implantation, leukemia inhibitory factor (Lif), a cytokine that is absolutely required for implantation in mice, is weakly expressed in Kiss1(-/-) uterine glands and that the administration of exogenous Lif to hormone-primed Kiss1(-/-) female mice is sufficient to partially rescue implantation. Taken together, our study reveals that uterine kisspeptin signaling regulates glandular Lif levels, thereby identifying a novel and critical role for kisspeptin in regulating embryo implantation in the mouse. This study provides compelling reasons to explore this role in other species, particularly livestock and humans.


Subject(s)
Embryo Implantation , Kisspeptins/physiology , Leukemia Inhibitory Factor/physiology , Pregnancy, Animal/physiology , Uterus/physiology , Animals , Estradiol/physiology , Female , Gonadotropins/physiology , Kisspeptins/deficiency , Kisspeptins/genetics , Male , Mice , Mice, Knockout , Mice, Transgenic , Pregnancy , Progesterone/metabolism , Superovulation
8.
J Neurosci ; 34(8): 2860-70, 2014 Feb 19.
Article in English | MEDLINE | ID: mdl-24553927

ABSTRACT

An increasing number of proteins involved in genome organization have been implicated in neurodevelopmental disorders, highlighting the importance of chromatin architecture in the developing CNS. The CCCTC-binding factor (CTCF) is a zinc finger DNA binding protein involved in higher-order chromatin organization, and mutations in the human CTCF gene cause an intellectual disability syndrome associated with microcephaly. However, information on CTCF function in vivo in the developing brain is lacking. To address this gap, we conditionally inactivated the Ctcf gene at early stages of mouse brain development. Cre-mediated Ctcf deletion in the telencephalon and anterior retina at embryonic day 8.5 triggered upregulation of the p53 effector PUMA (p53 upregulated modulator of apoptosis), resulting in massive apoptosis and profound ablation of telencephalic structures. Inactivation of Ctcf several days later at E11 also resulted in PUMA upregulation and increased apoptotic cell death, and the Ctcf-null forebrain was hypocellular and disorganized at birth. Although deletion of both Ctcf and Puma in the embryonic brain efficiently rescued Ctcf-null progenitor cell apoptosis, it failed to improve neonatal hypocellularity due to decreased proliferative capacity of rescued apical and outer radial glia progenitor cells. This was exacerbated by an independent effect of CTCF loss that resulted in depletion of the progenitor pool due to premature neurogenesis earlier in development. Our findings demonstrate that CTCF activities are required for two distinct events in early cortex formation: first, to correctly regulate the balance between neuroprogenitor cell proliferation and differentiation, and second, for the survival of neuroprogenitor cells, providing new clues regarding the contributions of CTCF in microcephaly/intellectual disability syndrome pathologies.


Subject(s)
Cell Differentiation/genetics , Cell Differentiation/physiology , Cell Survival/genetics , Cell Survival/physiology , Neural Stem Cells/physiology , Repressor Proteins/physiology , Animals , Antimetabolites , Apoptosis/genetics , Apoptosis/physiology , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/physiology , Brain/abnormalities , Bromodeoxyuridine , CCCTC-Binding Factor , Cell Death/physiology , Chromatin Immunoprecipitation , Exons/genetics , Female , Fluorescent Antibody Technique , Genes, p53/genetics , Genes, p53/physiology , Image Processing, Computer-Assisted , Mice , Mice, Knockout , Nestin/genetics , Nestin/physiology , Pregnancy , Primary Cell Culture , Real-Time Polymerase Chain Reaction , Retina/cytology , Retina/physiology , Telencephalon/cytology , Telencephalon/physiology , Tumor Suppressor Proteins/genetics , Tumor Suppressor Proteins/physiology
9.
Behav Genet ; 41(1): 77-89, 2011 Jan.
Article in English | MEDLINE | ID: mdl-21207242

ABSTRACT

Reading disabilities (RD) have been linked and associated with markers on chromosome 6p with results from multiple independent samples pointing to KIAA0319 as a risk gene and specifically, the 5' region of this gene. Here we focus genetic studies on a 2.3 kb region spanning the predicted promoter, the first untranslated exon, and part of the first intron, a region we identified as a region of open chromatin. Using DNA from probands with RD, we screened for genetic variants and tested select variants for association. We identified 17 DNA variants in this sample of probands, 16 of which were previously reported in public databases and one previously identified in a screen of this region. Based on the allele frequencies in the probands compared to public databases, and on possible functional consequences of the variation, we selected seven variants to test for association in a sample of families with RD, in addition to four variants which had been tested previously. We also tested two markers 5' of this region that were previously reported as associated. The strongest evidence for association was observed with alleles of the microsatellite marker located in the first untranslated exon and haplotypes of that marker. These results support previous studies indicating the 5' region of the KIAA0319 gene as the location of risk alleles contributing to RD.


Subject(s)
5' Untranslated Regions/genetics , Alleles , Dyslexia/genetics , Genetic Predisposition to Disease/genetics , Genetic Variation/genetics , Nerve Tissue Proteins/genetics , Adolescent , Child , Chromosomes, Human, Pair 6/genetics , Female , Gene Frequency/genetics , Genetic Association Studies , Genotype , Haplotypes/genetics , Humans , Male , Microsatellite Repeats , Ontario , Polymorphism, Genetic/genetics
10.
Lipids ; 45(4): 291-9, 2010 Apr.
Article in English | MEDLINE | ID: mdl-20306148

ABSTRACT

In the brain, polyunsaturated fatty acids (PUFA), especially arachidonic acid and docosahexaenoic acid (DHA), are required for regulating membrane fluidity, neuronal survival and signal transduction. Since the brain cannot synthesize n-6 and n-3 PUFA de novo, they must be supplied from the blood. However, the methods of PUFA entry into the brain are not agreed upon. This study tested the necessity of CD36, a candidate transporter of unesterified fatty acids, for maintaining brain PUFA concentrations by comparing brain PUFA concentrations in CD36(-/-) mice to their wild-type littermates. Because CD36(-/-) mice have been reported to have impaired learning ability, the PUFA concentrations in different brain regions (cortex, hippocampus, cerebellum and the remainder of brain) were investigated. At 9 weeks of age, the brain was separated into the four regions and fatty acid concentrations in total and phospholipid classes of these brain regions were analyzed using thin layer and gas chromatography. There were no statistical differences in arachidonic acid or DHA concentrations in the different brain regions between wild-type and CD36(-/-) mice, in total or phospholipid fractions. Concentrations of monounsaturated fatty acids were decreased in several phospholipid fractions in CD36(-/-) mice. These findings suggest that CD36 is not necessary for maintaining brain PUFA concentrations and that other mechanisms must exist.


Subject(s)
Brain/metabolism , CD36 Antigens/genetics , Fatty Acids, Unsaturated/metabolism , Gene Deletion , Animals , Brain Chemistry/genetics , Cholesterol/analysis , Cholesterol/metabolism , Fatty Acids, Unsaturated/analysis , Lipid Metabolism/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout , Osmolar Concentration
SELECTION OF CITATIONS
SEARCH DETAIL
...