Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Cereb Cortex ; 33(9): 5636-5645, 2023 04 25.
Article in English | MEDLINE | ID: mdl-36396729

ABSTRACT

Neural dynamics are altered in the primary visual cortex (V1) during critical period monocular deprivation (MD). Synchronization of neural oscillations is pertinent to physiological functioning of the brain. Previous studies have reported chronic disruption of V1 functional properties such as ocular dominance, spatial acuity, and binocular matching after long-term monocular deprivation (LTMD). However, the possible neuromodulation and neural synchrony has been less explored. Here, we investigated the difference between juvenile and adult experience-dependent plasticity in mice from intracellular calcium signals with fluorescent indicators. We also studied alterations in local field potentials power bands and phase-amplitude coupling (PAC) of specific brain oscillations. Our results showed that LTMD in juveniles causes higher neuromodulatory changes as seen by high-intensity fluorescent signals from the non-deprived eye (NDE). Meanwhile, adult mice showed a greater response from the deprived eye (DE). LTMD in juvenile mice triggered alterations in the power of delta, theta, and gamma oscillations, followed by enhancement of delta-gamma PAC in the NDE. However, LTMD in adult mice caused alterations in the power of delta oscillations and enhancement of delta-gamma PAC in the DE. These markers are intrinsic to cortical neuronal processing during LTMD and apply to a wide range of nested oscillatory markers.


Subject(s)
Vision, Monocular , Visual Cortex , Animals , Mice , Vision, Monocular/physiology , Sensory Deprivation/physiology , Visual Cortex/physiology , Dominance, Ocular , Neurons/physiology , Neuronal Plasticity/physiology
2.
Cereb Cortex ; 32(12): 2657-2667, 2022 06 07.
Article in English | MEDLINE | ID: mdl-35708067

ABSTRACT

Development and maturation in cortical networks depend on neuronal activity. For stabilization and pruning of connections, synchronized oscillations play a crucial role. A fundamental mechanism that enables coordinated activity during brain functioning is formed of synchronized neuronal oscillations in low- (delta and theta) and high- (gamma) frequency bands. The relationship between neural synchrony, cognition, and the perceptual process has been widely studied, but any possible role of neural synchrony in amblyopia has been less explored. We hypothesized that monocular deprivation (MD) during early postnatal life would lead to changes in neuronal activity that would be demonstrated by changes in phase-amplitude coupling (PAC) and altered power in specific oscillatory frequency. Our results demonstrate that functional connectivity in the visual cortex is altered by MD during adolescence. The amplitude of high-frequency oscillations is modulated by the phase of low-frequency oscillations. Demonstration of enhanced delta-gamma and theta-gamma PAC indicates that our results are relevant for a broad range of nested oscillatory markers. These markers are inherent to neuronal processing and are consistent with the hypothesized increase in the intrinsic coupling that arises from neural oscillatory phase alignment. Our results reveal distinct frequency bands exhibit altered power and coherence variations modulated by experience-driven plasticity.


Subject(s)
Visual Cortex , Animals , Cognition , Mice , Neurons/physiology , Visual Cortex/physiology
3.
Front Cell Neurosci ; 16: 785199, 2022.
Article in English | MEDLINE | ID: mdl-35197826

ABSTRACT

To investigate neuromodulation of functional and directional connectivity features in both visual and non-visual brain cortices after short-term and long-term retinal electrical stimulation in retinal degeneration mice. We performed spontaneous electrocorticography (ECoG) in retinal degeneration (rd) mice following prolonged transcorneal electrical stimulation (pTES) at varying currents (400, 500 and 600 µA) and different time points (transient or day 1 post-stimulation, 1-week post-stimulation and 2-weeks post-stimulation). We also set up a sham control group of rd mice which did not receive any electrical stimulation. Subsequently we analyzed alterations in cross-frequency coupling (CFC), coherence and directional connectivity of the primary visual cortex and the prefrontal cortex. It was observed that the sham control group did not display any significant changes in brain connectivity across all stages of electrical stimulation. For the stimulated groups, we observed that transient electrical stimulation of the retina did not significantly alter brain coherence and connectivity. However, for 1-week post-stimulation, we identified enhanced increase in theta-gamma CFC. Meanwhile, enhanced coherence and directional connectivity appeared predominantly in theta, alpha and beta oscillations. These alterations occurred in both visual and non-visual brain regions and were dependent on the current amplitude of stimulation. Interestingly, 2-weeks post-stimulation demonstrated long-lasting enhancement in network coherence and connectivity patterns at the level of cross-oscillatory interaction, functional connectivity and directional inter-regional communication between the primary visual cortex and prefrontal cortex. Application of electrical stimulation to the retina evidently neuromodulates brain coherence and connectivity of visual and non-visual cortices in retinal degeneration mice and the observed alterations are largely maintained. pTES holds strong possibility of modulating higher cortical functions including pathways of cognition, awareness, emotion and memory.

4.
IEEE Trans Biomed Eng ; 69(1): 314-324, 2022 01.
Article in English | MEDLINE | ID: mdl-34351851

ABSTRACT

OBJECTIVE: This research aims to design a hardware optimized machine learning based Depth of Anesthesia (DOA) measurement framework for mice and its FPGA implementation. METHODS: Electroencephalography or EEG signal is acquired from 16 mice in the Neural Interface Research (NIR) Laboratory of the City University of Hong Kong. We present a logistic regression based approach with mathematically uncomplicated feature extraction techniques for efficient hardware implementation to estimate the DOA. RESULTS: With the extraction of only two features, the proposed system can classify the state of consciousness with 94% accuracy for a 1 second EEG epoch, leading to a 100% accurate channel prediction after a 7 s run-time on average. CONCLUSION: Through performance evaluation and comparative study confirmed the efficacy of the prototype. SIGNIFICANCE: DOA is the measure of consciousness to distinguish whether a patient is suitably anesthetized or not during a surgical procedure. Traditionally the DOA is estimated by checking biophysical responses of a patient during the surgery. However, the physical symptoms can be misleading for a decisive conclusion due to the patient's health condition or as a side-effect of anesthetic drugs. Recently, several neuroscientific research works are correlating the EEG signal with conscious states, which is likely to have less interference with the patient's medical condition. This research presents the first-of-its-kind hardware implemented automatic DOA computation system for mice.


Subject(s)
Anesthesia , Algorithms , Animals , Computers , Consciousness , Electroencephalography , Humans , Machine Learning , Mice
5.
Article in English | MEDLINE | ID: mdl-34891248

ABSTRACT

Much of our understanding of experience-dependent plasticity originates from the level of single cells and synapses through the well-established techniques of whole-cell recording and calcium imaging. The study of cortical plasticity of neural oscillatory networks remains largely unexplored. Cross-frequency coupling has become an emerging tool to study the underlying mechanisms for synchronization and interaction between local and global processes of cortical networks. The phase of low-frequency oscillations modulates the amplitude of high-frequency oscillations through a phase-amplitude coupling. Recent studies found that gamma-band oscillations associate with critical period plasticity. The existence of such mechanisms in ocular dominance plasticity is yet to be fully demonstrated. In this study, in-vivo electrophysiological methods for recording local field potentials in the primary visual cortex (V1) of anesthetized mice are employed. Our results reveal the mechanisms of neuronal oscillatory activities for the experience-dependent plasticity of developing visual cortical circuits.


Subject(s)
Primary Visual Cortex , Visual Cortex , Animals , Dominance, Ocular , Mice , Neuronal Plasticity , Synapses
6.
Annu Int Conf IEEE Eng Med Biol Soc ; 2021: 5784-5787, 2021 11.
Article in English | MEDLINE | ID: mdl-34892434

ABSTRACT

Transcorneal electrical stimulation (TES) is a noninvasive approach for activating the retina and its downstream components through the application of electric current on the cornea. Although previous studies have demonstrated the clinical relevance of TES for modulating neurons with improvements in visual evoked potentials (VEPs) and electroretinograms (ERGs), there are still huge gaps in knowledge of its effect on the brain structures. To determine the short-term impact as well as the aftereffects of TES on neural oscillatory power in retinal degeneration mice, we performed electrocorticography (ECoG) recording in the prefrontal and primary visual cortices at different stages of prolonged TES [transient stage, following prolonged stimulation (post-stimulation stage 1) and long after the end of the retinal stimulation (post-stimulation stage 2)]) under varying stimulation current amplitudes (400 µA, 500 µA and 600 µA). The results revealed asymmetric differences between short-term and long-term pTES under different stimulation current amplitudes. Specifically, in post-stimulation stage 1 we observed significant increase in ECoG power of theta, alpha and beta oscillations respectively compared with baseline pre-stimulation results. These effects were dependent on the stimulation current amplitude and stimulation stage. Transient TES was not sufficient to cause significant changes in the ECoG power of all accessed oscillations except in medium, high and ultra-gamma oscillations which significantly decreased in 400 µA and 500 µA stimulation groups respectively compared with pre-stimulation results. Regarding long-term stimulation, the increase in ECoG power of theta, alpha and beta oscillations observed in post-stimulation stage 1 was significantly maintained in post-stimulation stage 2.Clinical Relevance- These results could be of core importance for human TES protocols suggesting that following pTES and long after the end of the stimulation, TES current amplitudes could have relatively different impacts on the power/activity of cortical oscillations. For example, by increasing the activity of oscillations that have been reported to inhibit irrelevant neural processes and enable the brain to focus on more relevant neural processes thus, inducing better coordination in the cortex.


Subject(s)
Electrocorticography , Evoked Potentials, Visual , Animals , Electric Stimulation , Electroretinography , Mice , Primary Visual Cortex
7.
J Adv Res ; 24: 53-67, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32181016

ABSTRACT

Regenerative shock absorbers (RSAs) have still not entered production lines despite the promising potentials in energy efficiency and emission reduction. Vibration energy harvesting from vehicle dampers has been replicating the dynamics of passive viscous dampers. An accurate frequency-based analysis of the harvestable energy and dynamics for vehicle suspensions under typical operating conditions is essentially needed for designing functional Vibratory Regenerative Dampers (VRDs). This paper proposes frequency-based parametrical bandwidth sensitivity analyses of both the vehicular suspension dynamics and energy harvesting potentiality in accordance with the Monte Carlo sensitivity simulations. This provides insights into which suspension parameter could highly broaden the harvestable power magnitude, which contributes positively to conceptualizing an efficient design of a wide broad-banded energy harvesting damper leading to improved harvesting efficiencies in different road conditions. The conducted sensitivity analysis included the change in both frequency and amplitude bandwidth of the dissipative damping power, body acceleration, dynamic tire load, and suspension deflection. During the sensitivity simulations, a 2-DOFs (degrees-of-freedom) quarter-car model is considered, being excited by harmonic excitations. The selected suspension parameters were normally randomized according to the Gaussian probability distribution based on their nominal values and a 30% SD (standard deviation) with respect to the uniformly randomized excitation frequency. The results inferred higher sensitivity change in the harvestable power bandwidth versus the excitation parameters, damping rate, and tire properties. Conversely, the harvestable power hardly broadened with respect to the body and wheel masses and the spring stiffness.

SELECTION OF CITATIONS
SEARCH DETAIL
...