Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 15604-15618, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37639415

ABSTRACT

Learning time-series representations when only unlabeled data or few labeled samples are available can be a challenging task. Recently, contrastive self-supervised learning has shown great improvement in extracting useful representations from unlabeled data via contrasting different augmented views of data. In this work, we propose a novel Time-Series representation learning framework via Temporal and Contextual Contrasting (TS-TCC) that learns representations from unlabeled data with contrastive learning. Specifically, we propose time-series-specific weak and strong augmentations and use their views to learn robust temporal relations in the proposed temporal contrasting module, besides learning discriminative representations by our proposed contextual contrasting module. Additionally, we conduct a systematic study of time-series data augmentation selection, which is a key part of contrastive learning. We also extend TS-TCC to the semi-supervised learning settings and propose a Class-Aware TS-TCC (CA-TCC) that benefits from the available few labeled data to further improve representations learned by TS-TCC. Specifically, we leverage the robust pseudo labels produced by TS-TCC to realize a class-aware contrastive loss. Extensive experiments show that the linear evaluation of the features learned by our proposed framework performs comparably with the fully supervised training. Additionally, our framework shows high efficiency in few labeled data and transfer learning scenarios.

2.
Article in English | MEDLINE | ID: mdl-37022869

ABSTRACT

The past few years have witnessed a remarkable advance in deep learning for EEG-based sleep stage classification (SSC). However, the success of these models is attributed to possessing a massive amount of labeled data for training, limiting their applicability in real-world scenarios. In such scenarios, sleep labs can generate a massive amount of data, but labeling can be expensive and time-consuming. Recently, the self-supervised learning (SSL) paradigm has emerged as one of the most successful techniques to overcome labels' scarcity. In this paper, we evaluate the efficacy of SSL to boost the performance of existing SSC models in the few-labels regime. We conduct a thorough study on three SSC datasets, and we find that fine-tuning the pretrained SSC models with only 5% of labeled data can achieve competitive performance to the supervised training with full labels. Moreover, self-supervised pretraining helps SSC models to be more robust to data imbalance and domain shift problems.

3.
Article in English | MEDLINE | ID: mdl-35737606

ABSTRACT

Unsupervised domain adaptation (UDA) has successfully addressed the domain shift problem for visual applications. Yet, these approaches may have limited performance for time series data due to the following reasons. First, they mainly rely on the large-scale dataset (i.e., ImageNet) for source pretraining, which is not applicable for time series data. Second, they ignore the temporal dimension on the feature space of the source and target domains during the domain alignment step. Finally, most of the prior UDA methods can only align the global features without considering the fine-grained class distribution of the target domain. To address these limitations, we propose a SeLf-supervised AutoRegressive Domain Adaptation (SLARDA) framework. In particular, we first design a self-supervised (SL) learning module that uses forecasting as an auxiliary task to improve the transferability of source features. Second, we propose a novel autoregressive domain adaptation technique that incorporates temporal dependence of both source and target features during domain alignment. Finally, we develop an ensemble teacher model to align class-wise distribution in the target domain via a confident pseudo labeling approach. Extensive experiments have been conducted on three real-world time series applications with 30 cross-domain scenarios. The results demonstrate that our proposed SLARDA method significantly outperforms the state-of-the-art approaches for time series domain adaptation. Our source code is available at: https://github.com/mohamedr002/SLARDA.

4.
Article in English | MEDLINE | ID: mdl-33909566

ABSTRACT

Automatic sleep stage mymargin classification is of great importance to measure sleep quality. In this paper, we propose a novel attention-based deep learning architecture called AttnSleep to classify sleep stages using single channel EEG signals. This architecture starts with the feature extraction module based on multi-resolution convolutional neural network (MRCNN) and adaptive feature recalibration (AFR). The MRCNN can extract low and high frequency features and the AFR is able to improve the quality of the extracted features by modeling the inter-dependencies between the features. The second module is the temporal context encoder (TCE) that leverages a multi-head attention mechanism to capture the temporal dependencies among the extracted features. Particularly, the multi-head attention deploys causal convolutions to model the temporal relations in the input features. We evaluate the performance of our proposed AttnSleep model using three public datasets. The results show that our AttnSleep outperforms state-of-the-art techniques in terms of different evaluation metrics. Our source codes, experimental data, and supplementary materials are available at https://github.com/emadeldeen24/AttnSleep.


Subject(s)
Deep Learning , Electroencephalography , Neural Networks, Computer , Sleep , Sleep Stages
SELECTION OF CITATIONS
SEARCH DETAIL
...