Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Pharmacol Biochem Behav ; 238: 173735, 2024 May.
Article in English | MEDLINE | ID: mdl-38373600

ABSTRACT

RATIONALE: Fentanyl remains the primary cause of fatal overdoses, and its co-use with methamphetamine (METH) is a growing concern. We previously demonstrated that racemic METH can either enhance or mitigate opioid-induced respiratory depression (OIRD) dependent upon whether a low or high dose is administered. The optical isomers of METH, dextromethamphetamine (d-METH) and levomethamphetamine (l-METH), differ substantially in their selectivity and potency to activate various monoamine (MA) receptors, and these pharmacological differences may underlie the bidirectional effects of the racemate. Since it is unknown which of METH's MA receptor mechanisms mediate these respiratory effects, examination of METH's pharmacologically distinct enantiomers may provide insight into treatment targets for OIRD. METHODS: The two optical isomers of METH, d-METH and l-METH, were tested in adult male mice to determine their effects on basal and fentanyl-depressed respiratory frequency, tidal volume, and minute ventilation (MVb; i.e., respiratory frequency x tidal volume) using whole-body plethysmography. RESULTS: When tested at dose ranges of 1.0-10 mg/kg, d-METH elevated MVb and l-METH decreased basal MVb. A dose of 30 mg/kg l-METH increased basal MVb. Under fentanyl-depressed conditions, the bidirectional effects of racemic METH were observed with d-METH treatment while l-METH significantly exacerbated OIRD at 1.0 and 3.0 mg/kg. CONCLUSIONS: d-METH and l-METH differentially contribute to the bidirectional respiratory modulation observed by the racemate, with d-METH exhibiting predominantly stimulatory effects and l-METH exhibiting primarily depressant effects depending on dose.


Subject(s)
Fentanyl , Methamphetamine , Rats , Mice , Animals , Male , Fentanyl/pharmacology , Rats, Sprague-Dawley , Methamphetamine/pharmacology , Amphetamine/pharmacology , Respiration , Analgesics, Opioid/pharmacology
2.
Pharmacol Biochem Behav ; 229: 173601, 2023 08.
Article in English | MEDLINE | ID: mdl-37414364

ABSTRACT

RATIONALE: The opioid epidemic remains a pressing public health crisis in the United States. Most of these overdose deaths are a result of lethal respiratory depression. In recent years the increasing incidence of opioid-involved overdose deaths has been driven by fentanyl, which is more resistant to adequate reversal by naloxone (NARCAN ®) than semi-synthetic or classical morphinan predecessors like oxycodone and heroin. For this and other reasons (e.g., precipitating withdrawal) non-opioidergic pharmacotherapies to reverse opioid-depressed respiration are needed. Methylxanthines are a class of stimulant drugs including caffeine and theophylline which exert their effects primarily via adenosine receptor antagonism. Evidence suggests methylxanthines can stimulate respiration by enhancing neural activity in respiratory nuclei in the pons and medulla independent of opioid receptors. This study aimed to determine whether caffeine and theophylline can stimulate respiration in mice when depressed by fentanyl and oxycodone. METHODS: Whole-body plethysmography was used to characterize fentanyl and oxycodone's effects on respiration and their reversal by naloxone in male Swiss Webster mice. Next, caffeine and theophylline were tested for their effects on basal respiration. Finally, each methylxanthine was evaluated for its ability to reverse similar levels of respiratory depression induced by fentanyl or oxycodone. RESULTS AND CONCLUSIONS: Oxycodone and fentanyl dose-dependently reduced respiratory minute volume (ml/min; MVb) that was reversible by naloxone. Caffeine and theophylline each significantly increased basal MVb. Theophylline, but not caffeine, completely reversed oxycodone-depressed respiration. In contrast, neither methylxanthine elevated fentanyl-depressed respiration at the doses tested. Despite their limited efficacy for reversing opioid-depressed respiration when administered alone, the methylxanthines safety, duration, and mechanism of action supports further evaluation in combination with naloxone to augment its reversal of opioid-depressed respiration.


Subject(s)
Analgesics, Opioid , Respiratory Insufficiency , Male , Animals , Mice , Analgesics, Opioid/adverse effects , Theophylline/pharmacology , Oxycodone/adverse effects , Caffeine/adverse effects , Fentanyl/adverse effects , Naloxone/pharmacology , Respiratory Insufficiency/chemically induced , Respiratory Insufficiency/drug therapy , Narcotic Antagonists/therapeutic use
3.
Drug Alcohol Depend ; 243: 109740, 2023 02 01.
Article in English | MEDLINE | ID: mdl-36608481

ABSTRACT

BACKGROUND: The opioid epidemic remains one of the most pressing public health crises facing the United States. Fentanyl and related synthetic opioid agonists have largely driven the rising rates of associated overdose deaths, in part, because of their surreptitious use as substitutes for other opioids and as adulterants in psychostimulants. Deaths involving opioids typically result from lethal respiratory depression, and it is currently unknown how co-use of psychostimulants with opioids affects respiratory toxicity. Considering psychostimulant overdoses have increased over 3-fold since 2013, and half of those co-involved opioids, this is a cardinal question. METHODS: Naloxone, d-amphetamine (AMPH), and (±)-methamphetamine (METH) were evaluated for their effects on basal and fentanyl-depressed respiration. Minute volume (MVb) was measured in awake, freely moving mice via whole-body plethysmography to quantify fentanyl-induced respiratory depression and its modulation by dose ranges of each test drug. RESULTS: Naloxone immediately reversed respiratory depression induced by fentanyl only at the highest dose tested (10 mg/kg). Both AMPH and METH exhibited bidirectional effects on MVb under basal conditions, producing significant (p ≤ 0.05) depressions then elevations of respiration as dose increased. Under depressed conditions the bidirectional effects of AMPH and METH on respiration were exaggerated, exacerbating and then reversing fentanyl-induced depression as dose increased. CONCLUSIONS: These results indicate that co-use of amphetamines with fentanyl may worsen respiratory depression, but conversely, monoaminergic components of the amphetamines may possibly be exploited to mitigate fentanyl overdose.


Subject(s)
Central Nervous System Stimulants , Drug Overdose , Methamphetamine , Respiratory Insufficiency , Mice , United States , Animals , Fentanyl , Analgesics, Opioid/therapeutic use , Central Nervous System Stimulants/adverse effects , Naloxone/pharmacology , Naloxone/therapeutic use , Methamphetamine/adverse effects , Drug Overdose/drug therapy , Amphetamine/adverse effects , Respiratory Insufficiency/chemically induced , Respiration
SELECTION OF CITATIONS
SEARCH DETAIL
...