Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Omega ; 9(9): 10190-10200, 2024 Mar 05.
Article in English | MEDLINE | ID: mdl-38463285

ABSTRACT

In this paper, the degradation of fluconazole drug (Flz) was explored kinetically utilizing permanganate ion [MnO4-] as an oxidant in different acidic environments, namely sulfuric and perchloric acids at various temperatures. Stoichiometry of the reactions between Flz and [MnO4-] in both acidic environments was attained to be 1.2 ± 0.07 mol. The kinetics of the degradation reactions in both cases were the same, being unit order regarding [MnO4-], fewer than unit orders in [Flz], and fractional second orders in acid concentrations. The rate of oxidative degradation of fluconazole in H2SO4 was higher than that in HClO4 at the same investigational circumstances. The addition of small amounts of Mg2+ and Zn2+ enhanced the degradation rates. The activation quantities were evaluated and debated. The gained oxidation products were characterized using spot tests. A mechanistic approach for the fluconazole degradation was suggested. Finally, the rate law expressions were derived which were agreed with the acquired outcomes. The rates of degradation for various [Flz] were mathematically modeled using the response surface methodology (RSM). The RSM model's conclusions and the experimental findings are in agreement. The oxidative degradation mechanism of Flz using density functional theory (DFT) was performed. The fluconazole drug degrades in acidic settings, protecting both the environment and human health, according to a method that is easy to use, powerful, inexpensive, practical, affordable, and safe.

2.
ACS Omega ; 9(6): 6761-6772, 2024 Feb 13.
Article in English | MEDLINE | ID: mdl-38371797

ABSTRACT

Due to the unique properties of steel, including its hardness, durability, and superconductivity, which make it an essential material in many industries, it lacks corrosion resistance. Herewith, two novel triazole-thione Schiff bases, namely, (E)-5-methyl-4-((thiophen-2-ylmethylene)amino)-2,4-dihydro-3H-1,2,4-triazole-3-thione (TMAT) and (E)-4-(((5-(dimethylamino)thiophen-2-yl)methylene)amino)-5-methyl-2,4-dihydro-3H-1,2,4-triazole-3-thione (DMTMAT), were synthesized and characterized. The corrosion inhibition (CI) ability of these two molecules on carbon steel in an aqueous solution of 1 M HCl as well as their interaction with its surface was studied using a number of different techniques. The results confirmed that the CI capability of these organic molecules depends on their strong adsorption on the metal surface and the formation of a protective anticorrosion film. Weight loss tests revealed that the inhibition efficiencies of TMAT and DMTMAT were 91.1 and 94.0%, respectively, at 1 × 10-3 M concentrations. The results of electrochemical impedance spectroscopy (EIS) indicated that there was a direct relationship between the inhibitor concentration and the transfer resistance. Potentiodynamic polarization (PDP) experiments have proven to be mixed-type inhibitors of C-steel in aqueous hydrochloric acid solution and follow the Langmuir adsorption isotherm model. Several thermodynamic and kinetic parameters were calculated. The negative values of the adsorption-free energy are -36.7 and -38.5 kJ/mol for TMAT and DMTMAT, respectively, confirming the spontaneity of the adsorption process. The MD simulation study's findings show that the inhibitor molecules are nearly parallel to the metal surface. The interaction energy calculated by the MD simulation and the inhibitory trend are the same. The practical implementation is consistent with what the computer models predicted.

3.
ACS Omega ; 8(31): 28314-28332, 2023 Aug 08.
Article in English | MEDLINE | ID: mdl-37576643

ABSTRACT

Herein, we synthesized three novel benzothiazole azo dyes, including 4-chloro-2-(4-methyl-benzothiazol-2-ylazo)-phenol (CMBTAP), 1-(6-chloro-benzothiazol-2-ylazo)-naphthalen-2-ol (CBAN), and 2-(6-chloro-benzothiazol-2-ylazo)-4-methyl-phenol (CBAMP), and investigated their corrosion inhibition effect on carbon steel. The dyes were characterized by Fourier transform infrared spectroscopy, 1H nuclear magnetic resonance (NMR), 13C NMR, and mass spectroscopy. Weight loss, electrochemical impedance spectroscopy, and potentiodynamic polarization measurements were performed to investigate the corrosion inhibition effect of the dyes on carbon steel in a 1.0 M HCl solution. The synergistic effects of the dyes with potassium iodide (KI) were also investigated. The inhibition efficiency (IE%) was enhanced by increasing the dose of the dyes (1 × 10-5 to 2 × 10-4 M) and decreased as the temperature increased from 25 to 45 °C. The addition of KI to a 1.0 M HCl solution containing the dyes improved the performance and efficiency as iodide ions promoted the formation of inhibition films on the surface of carbon steel. The dyes are mixed-type inhibitors, according to Tafel polarization. Scanning electron microscopy and energy dispersive X-ray analysis were used to evaluate the surface morphology of carbon steel sheets. Quantum theory calculations were utilized to evaluate the relationship between the dyes' chemical structures and their inhibitory efficiency, which confirmed the experimental results. The calculations revealed that the dyes have low energy gap and Milliken and Fukui indices. Among all of the dyes, CMBTAP showed the highest adsorption energy. The corrosion IE was in the order CMBTAP > CBAMP > CBAN.

SELECTION OF CITATIONS
SEARCH DETAIL
...