Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Main subject
Language
Publication year range
1.
Tree Physiol ; 43(9): 1603-1618, 2023 09 06.
Article in English | MEDLINE | ID: mdl-37171580

ABSTRACT

Drought-induced mortality is a major direct effect of climate change on tree health, but drought can also affect trees indirectly by altering their susceptibility to pathogens. Here, we report how a combination of mild or severe drought and pathogen infection affected the growth, pathogen resistance and gene expression in potted 5-year-old Norway spruce trees [Picea abies (L.) Karst.]. After 5 weeks of drought, trees were inoculated with the fungal pathogen Endoconidiophora polonica. Combined drought-pathogen stress over the next 8 weeks led to significant reductions in the growth of drought-treated trees relative to well-watered trees and more so in trees subjected to severe drought. Belowground, growth of the smallest fine roots was most affected. Aboveground, shoot diameter change was most sensitive to the combined stress, followed by shoot length growth and twig biomass. Both drought-related and some resistance-related genes were upregulated in bark samples collected after 5 weeks of drought (but before pathogen infection), and gene expression levels scaled with the intensity of drought stress. Trees subjected to severe drought were much more susceptible to pathogen infection than well-watered trees or trees subjected to mild drought. Overall, our results show that mild drought stress may increase the tree resistance to pathogen infection by upregulating resistance-related genes. Severe drought stress, on the other hand, decreased tree resistance. Because drought episodes are expected to become more frequent with climate change, combined effects of drought and pathogen stress should be studied in more detail to understand how these stressors interactively influence tree susceptibility to pests and pathogens.


Subject(s)
Picea , Picea/genetics , Droughts , Norway , Trees/genetics , Gene Expression
2.
Environ Geochem Health ; 12(1-2): 17-27, 1990 Mar.
Article in English | MEDLINE | ID: mdl-24202562

ABSTRACT

Aluminium (Al), when present in high concentrations, has for long been recognised as a toxic agent to aquatic freshwater organisms,i.e. downstream industrial point sources of Al-rich process water. Today the environmental effects of aluminium are mainly a result of acidic precipitation; acidification of catchments leads to increased Al- concentrations in soil solution and freshwaters. Large parts of both the aquatic and terrestrial ecosystems are affected.In the aquatic environment, aluminium acts as a toxic agent on gill-breathing animals such as fish and invertebrates, by causing loss of plasma- and haemolymph ions leading to osmoregulatory failure. In fish, the inorganic (labile) monomeric species of aluminium reduce the activities of gill enzymes important in the active uptake of ions. Aluminium seems also to accumulate in freshwater invertebrates. Dietary organically complexed aluminium, maybe in synergistic effects with other contaminants, may easily be absorbed and interfere with important metabolic processes in mammals and birds.The mycorrhiza and fine root systems of terrestrial plants are adversely affected by high levels of inorganic monomeric aluminium. As in the animals, aluminium seems to have its primary effect on enzyme systems important for the uptake of nutrients. Aluminium can accumulate in plants. Aluminium contaminated invertebrates and plants might thus be a link for aluminium to enter into terrestrial food chains.

SELECTION OF CITATIONS
SEARCH DETAIL
...