Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 22(1): e3002464, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38206904

ABSTRACT

Trichromacy is unique to primates among placental mammals, enabled by blue (short/S), green (medium/M), and red (long/L) cones. In humans, great apes, and Old World monkeys, cones make a poorly understood choice between M and L cone subtype fates. To determine mechanisms specifying M and L cones, we developed an approach to visualize expression of the highly similar M- and L-opsin mRNAs. M-opsin was observed before L-opsin expression during early human eye development, suggesting that M cones are generated before L cones. In adult human tissue, the early-developing central retina contained a mix of M and L cones compared to the late-developing peripheral region, which contained a high proportion of L cones. Retinoic acid (RA)-synthesizing enzymes are highly expressed early in retinal development. High RA signaling early was sufficient to promote M cone fate and suppress L cone fate in retinal organoids. Across a human population sample, natural variation in the ratios of M and L cone subtypes was associated with a noncoding polymorphism in the NR2F2 gene, a mediator of RA signaling. Our data suggest that RA promotes M cone fate early in development to generate the pattern of M and L cones across the human retina.


Subject(s)
Placenta , Tretinoin , Pregnancy , Adult , Animals , Humans , Female , Tretinoin/metabolism , Placenta/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retina/metabolism , Opsins/metabolism , Rod Opsins/genetics , Primates , Mammals/metabolism
2.
bioRxiv ; 2023 Sep 27.
Article in English | MEDLINE | ID: mdl-37808736

ABSTRACT

Resolving the molecular basis of a Mendelian condition (MC) remains challenging owing to the diverse mechanisms by which genetic variants cause disease. To address this, we developed a synchronized long-read genome, methylome, epigenome, and transcriptome sequencing approach, which enables accurate single-nucleotide, insertion-deletion, and structural variant calling and diploid de novo genome assembly, and permits the simultaneous elucidation of haplotype-resolved CpG methylation, chromatin accessibility, and full-length transcript information in a single long-read sequencing run. Application of this approach to an Undiagnosed Diseases Network (UDN) participant with a chromosome X;13 balanced translocation of uncertain significance revealed that this translocation disrupted the functioning of four separate genes (NBEA, PDK3, MAB21L1, and RB1) previously associated with single-gene MCs. Notably, the function of each gene was disrupted via a distinct mechanism that required integration of the four 'omes' to resolve. These included nonsense-mediated decay, fusion transcript formation, enhancer adoption, transcriptional readthrough silencing, and inappropriate X chromosome inactivation of autosomal genes. Overall, this highlights the utility of synchronized long-read multi-omic profiling for mechanistically resolving complex phenotypes.

3.
Cell Rep Methods ; 3(8): 100548, 2023 08 28.
Article in English | MEDLINE | ID: mdl-37671011

ABSTRACT

With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA sequencing (RNA-seq) multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10× methods produce highly concordant cell-class compositions and then expand sci-Plex to analyze the cell-class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to 6 weeks later. Our data show sci-Plex's potential to dramatically scale up the analysis of treatment conditions on relevant human models.


Subject(s)
Critical Pathways , Organoids , Humans , Cell Differentiation , Neurons , Retina
4.
bioRxiv ; 2023 Aug 26.
Article in English | MEDLINE | ID: mdl-37662196

ABSTRACT

Photoreception, a form of sensory experience, is essential for normal development of the mammalian visual system. Detecting photons during development is a prerequisite for visual system function - from vision's first synapse at the cone pedicle and maturation of retinal vascular networks, to transcriptional establishment and maturation of cell types within the visual cortex. Consistent with this theme, we find that the lighting environment regulates developmental rod photoreceptor apoptosis via OPN4-expressing intrinsically photosensitive retinal ganglion cells (ipRGCs). Using a combination of genetics, sensory environment manipulations, and computational approaches, we establish a molecular pathway in which light-dependent glutamate release from ipRGCs is detected via a transiently expressed kainate receptor (GRIK3) in immature rods localized to the inner retina. Communication between ipRGCs and nascent inner retinal rods appears to be mediated by unusual hybrid neurites projecting from ipRGCs that sense light before eye-opening. These structures, previously referred to as outer retinal dendrites (ORDs), span the ipRGC-immature rod distance over the first postnatal week and contain the machinery for sensory detection (melanopsin, OPN4) and axonal/anterograde neurotransmitter release (Synaptophysin, and VGLUT2). Histological and computational assessment of human mid-gestation development reveal conservation of several hallmarks of an ipRGC-to-immature rod pathway, including displaced immature rods, transient GRIK3 expression in the rod lineage, and the presence of ipRGCs with putative neurites projecting deep into the developing retina. Thus, this analysis defines a retinal retrograde signaling pathway that links the sensory environment to immature rods via ipRGC photoreceptors, allowing the visual system to adapt to distinct lighting environments priory to eye-opening.

5.
bioRxiv ; 2023 Jun 03.
Article in English | MEDLINE | ID: mdl-37398481

ABSTRACT

With a critical need for more complete in vitro models of human development and disease, organoids hold immense potential. Their complex cellular composition makes single-cell sequencing of great utility; however, the limitation of current technologies to a handful of treatment conditions restricts their use in screens or studies of organoid heterogeneity. Here, we apply sci-Plex, a single-cell combinatorial indexing (sci)-based RNA-seq multiplexing method to retinal organoids. We demonstrate that sci-Plex and 10x methods produce highly concordant cell class compositions and then expand sci-Plex to analyze the cell class composition of 410 organoids upon modulation of critical developmental pathways. Leveraging individual organoid data, we develop a method to measure organoid heterogeneity, and we identify that activation of Wnt signaling early in retinal organoid cultures increases retinal cell classes up to six weeks later. Our data show sci-Plex's potential to dramatically scale-up the analysis of treatment conditions on relevant human models.

6.
Front Cell Dev Biol ; 9: 764725, 2021.
Article in English | MEDLINE | ID: mdl-34869356

ABSTRACT

Human pluripotent stem cells (PSCs) represent a powerful tool to investigate human eye development and disease. When grown in 3D, they can self-assemble into laminar organized retinas; however, variation in the size, shape and composition of individual organoids exists. Neither the microenvironment nor the timing of critical growth factors driving retinogenesis are fully understood. To explore early retinal development, we developed a SIX6-GFP reporter that enabled the systematic optimization of conditions that promote optic vesicle formation. We demonstrated that early hypoxic growth conditions enhanced SIX6 expression and promoted eye formation. SIX6 expression was further enhanced by sequential inhibition of Wnt and activation of sonic hedgehog signaling. SIX6 + optic vesicles showed RNA expression profiles that were consistent with a retinal identity; however, ventral diencephalic markers were also present. To demonstrate that optic vesicles lead to bona fide "retina-like" structures we generated a SIX6-GFP/POU4F2-tdTomato dual reporter line that labeled the entire developing retina and retinal ganglion cells, respectively. Additional brain regions, including the hypothalamus and midbrain-hindbrain (MBHB) territories were identified by harvesting SIX6 + /POU4F2- and SIX6- organoids, respectively. Using RNAseq to study transcriptional profiles we demonstrated that SIX6-GFP and POU4F2-tdTomato reporters provided a reliable readout for developing human retina, hypothalamus, and midbrain/hindbrain organoids.

7.
Dev Biol ; 480: 114-122, 2021 12.
Article in English | MEDLINE | ID: mdl-34529997

ABSTRACT

The retina is a complex neuronal structure that converts light energy into visual perception. Many specialized aspects of the primate retina, including a cone rich macula for high acuity vision, ocular size, and cell type diversity are not found in other animal models. In addition, the unique morphologies and distinct laminar positions of cell types found in the retina make this model system ideal for the study of neuronal cell fate specification. Many key early events of human retinal development are inaccessible to investigation as they occur during gestation. For these reasons, it has been necessary to develop retinal model systems to gain insight into human-specific retinal development and disease. Recent advances in culturing retinal tissue have generated new systems for retinal research and have moved us closer to generating effective regenerative therapies for vision loss. Here, we describe the strengths, weaknesses, and future directions for different human retinal model systems including dissociated primary tissue, explanted primary tissue, retinospheres, and stem cell-derived retinal organoids.


Subject(s)
Cell Culture Techniques/trends , Retina/metabolism , Retina/physiology , Cell Culture Techniques/methods , Cell Differentiation/physiology , Humans , Induced Pluripotent Stem Cells , Models, Biological , Organoids/metabolism , Primary Cell Culture/methods , Retinal Cone Photoreceptor Cells/metabolism , Retinal Degeneration/metabolism
8.
PLoS Comput Biol ; 16(3): e1007691, 2020 03.
Article in English | MEDLINE | ID: mdl-32150546

ABSTRACT

Nervous systems are incredibly diverse, with myriad neuronal subtypes defined by gene expression. How binary and graded fate characteristics are patterned across tissues is poorly understood. Expression of opsin photopigments in the cone photoreceptors of the mouse retina provides an excellent model to address this question. Individual cones express S-opsin only, M-opsin only, or both S-opsin and M-opsin. These cell populations are patterned along the dorsal-ventral axis, with greater M-opsin expression in the dorsal region and greater S-opsin expression in the ventral region. Thyroid hormone signaling plays a critical role in activating M-opsin and repressing S-opsin. Here, we developed an image analysis approach to identify individual cone cells and evaluate their opsin expression from immunofluorescence imaging tiles spanning roughly 6 mm along the D-V axis of the mouse retina. From analyzing the opsin expression of ~250,000 cells, we found that cones make a binary decision between S-opsin only and co-expression competent fates. Co-expression competent cells express graded levels of S- and M-opsins, depending nonlinearly on their position in the dorsal-ventral axis. M- and S-opsin expression display differential, inverse patterns. Using these single-cell data, we developed a quantitative, probabilistic model of cone cell decisions in the retinal tissue based on thyroid hormone signaling activity. The model recovers the probability distribution for cone fate patterning in the mouse retina and describes a minimal set of interactions that are necessary to reproduce the observed cell fates. Our study provides a paradigm describing how differential responses to regulatory inputs generate complex patterns of binary and graded cell fates.


Subject(s)
Cone Opsins , Models, Biological , Retina , Retinal Cone Photoreceptor Cells , Animals , Computational Biology , Cone Opsins/analysis , Cone Opsins/chemistry , Cone Opsins/metabolism , Female , Image Processing, Computer-Assisted , Male , Mice , Mice, Inbred C57BL , Microscopy, Fluorescence , Retina/cytology , Retina/growth & development , Retinal Cone Photoreceptor Cells/cytology , Retinal Cone Photoreceptor Cells/physiology
9.
Science ; 362(6411)2018 10 12.
Article in English | MEDLINE | ID: mdl-30309916

ABSTRACT

The mechanisms underlying specification of neuronal subtypes within the human nervous system are largely unknown. The blue (S), green (M), and red (L) cones of the retina enable high-acuity daytime and color vision. To determine the mechanism that controls S versus L/M fates, we studied the differentiation of human retinal organoids. Organoids and retinas have similar distributions, expression profiles, and morphologies of cone subtypes. S cones are specified first, followed by L/M cones, and thyroid hormone signaling controls this temporal switch. Dynamic expression of thyroid hormone-degrading and -activating proteins within the retina ensures low signaling early to specify S cones and high signaling late to produce L/M cones. This work establishes organoids as a model for determining mechanisms of human development with promising utility for therapeutics and vision repair.


Subject(s)
Gene Expression Regulation, Developmental , Organoids/growth & development , Retina/growth & development , Retinal Cone Photoreceptor Cells/classification , Thyroid Hormones/metabolism , CRISPR-Cas Systems , Cell Line , Embryonic Stem Cells/metabolism , Humans , Mutation , Organoids/metabolism , Proteolysis , Retina/cytology
10.
Curr Biol ; 27(14): 2154-2162.e3, 2017 Jul 24.
Article in English | MEDLINE | ID: mdl-28712566

ABSTRACT

Fear responses are defensive states that ensure survival of an organism in the presence of a threat. Perception of an aversive cue causes changes in behavior and physiology, such as freezing and elevated cortisol, followed by a return to the baseline state when the threat is evaded [1]. Neural systems that elicit fear behaviors include the amygdala, hippocampus, and medial prefrontal cortex. However, aside from a few examples, little is known about brain regions that promote recovery from an aversive event [2]. Previous studies had implicated the dorsal habenular nuclei in regulating fear responses and boldness in zebrafish [3-7]. We now show, through perturbation of its inherent left-right (L-R) asymmetry at larval stages, that the dorsal habenulo-interpeduncular (dHb-IPN) pathway expedites the return of locomotor activity following an unexpected negative stimulus, electric shock. Severing habenular efferents to the IPN, or only those from the left dHb, prolongs the freezing behavior that follows shock. Individuals with a symmetric, right-isomerized dHb also exhibit increased freezing. In contrast, larvae that have a symmetric, left-isomerized dHb, or in which just the left dHb-IPN projection is optogenetically activated, rapidly resume swimming post shock. In vivo calcium imaging reveals a neuronal subset, predominantly in the left dHb, whose activation is correlated with resumption of swimming. The results demonstrate functional specialization of the left dHb-IPN pathway in attenuating the response to fear.


Subject(s)
Fear/physiology , Habenula/physiology , Zebrafish/physiology , Animals , Animals, Genetically Modified/physiology
11.
Trends Genet ; 32(10): 638-659, 2016 10.
Article in English | MEDLINE | ID: mdl-27615122

ABSTRACT

Across the animal kingdom, visual systems have evolved to be uniquely suited to the environments and behavioral patterns of different species. Visual acuity and color perception depend on the distribution of photoreceptor (PR) subtypes within the retina. Retinal mosaics can be organized into three broad categories: stochastic/regionalized, regionalized, and ordered. We describe here the retinal mosaics of flies, zebrafish, chickens, mice, and humans, and the gene regulatory networks controlling proper PR specification in each. By drawing parallels in eye development between these divergent species, we identify a set of conserved organizing principles and transcriptional networks that govern PR subtype differentiation.


Subject(s)
Biological Evolution , Cell Differentiation/genetics , Photoreceptor Cells, Vertebrate/physiology , Retina/growth & development , Animals , Chickens/genetics , Chickens/growth & development , Drosophila melanogaster/genetics , Drosophila melanogaster/growth & development , Humans , Mice , Zebrafish/genetics , Zebrafish/growth & development
12.
J Neurosci ; 35(32): 11346-57, 2015 Aug 12.
Article in English | MEDLINE | ID: mdl-26269641

ABSTRACT

Much of the molecular understanding of synaptic pathology in Alzheimer's disease (AD) comes from studies of various mouse models that express familial AD (FAD)-linked mutations, often in combinations. Most studies compare the absolute magnitudes of long-term potentiation (LTP) and long-term depression (LTD) to assess deficits in bidirectional synaptic plasticity accompanying FAD-linked mutations. However, LTP and LTD are not static, but their induction threshold is adjusted by overall neural activity via metaplasticity. Hence LTP/LTD changes in AD mouse models may reflect defects in metaplasticity processes. To determine this, we examined the LTP/LTD induction threshold in APPswe;PS1ΔE9 transgenic (Tg) mice across two different ages. We found that in young Tg mice (1 month), LTP is enhanced at the expense of LTD, but in adults (6 months), the phenotype is reversed to promote LTD and reduce LTP, compared to age-matched wild-type (WT) littermates. The apparent opposite phenotype across age was due to an initial offset in the induction threshold to favor LTP and the inability to undergo developmental metaplasticity in Tg mice. In WTs, the synaptic modification threshold decreased over development to favor LTP and diminish LTD in adults. However, in Tg mice, the magnitudes of LTP and LTD stayed constant across development. The initial offset in LTP/LTD threshold in young Tg mice did not accompany changes in the LTP/LTD induction mechanisms, but altered AMPA receptor phosphorylation and appearance of Ca(2+)-permeable AMPA receptors. We propose that the main synaptic defect in AD mouse models is due to their inability to undergo developmental metaplasticity. SIGNIFICANCE STATEMENT: This work offers a new insight that metaplasticity defects are central to synaptic dysfunctions seen in AD mouse models. In particular, we demonstrate that the apparent differences in LTP/LTD magnitude seen across ages in AD transgenic mouse models reflect the inability to undergo a normal developmental shift in metaplasticity.


Subject(s)
Alzheimer Disease/physiopathology , Hippocampus/physiopathology , Long-Term Potentiation/physiology , Long-Term Synaptic Depression/physiology , Synapses/physiology , Age Factors , Alzheimer Disease/metabolism , Animals , Calcium/metabolism , Disease Models, Animal , Female , Hippocampus/metabolism , Male , Mice , Phosphorylation , Receptors, AMPA/metabolism
13.
Harmful Algae ; 43: 103-110, 2015 Mar.
Article in English | MEDLINE | ID: mdl-26109923

ABSTRACT

Factors regulating excystment of a toxic dinoflagellate in the genus Alexandrium were investigated in cysts from Puget Sound, Washington State, USA. Experiments were carried out in the laboratory using cysts collected from benthic seedbeds to determine if excystment is controlled by internal or environmental factors. The results suggest that the timing of germination is not tightly controlled by an endogenous clock, though there is a suggestion of a cyclical pattern. This was explored using cysts that had been stored under cold (4 °C), anoxic conditions in the dark and then incubated for 6 weeks at constant favorable environmental conditions. Excystment occurred during all months of the year, with variable excystment success ranging from 31-90%. When cysts were isolated directly from freshly collected sediments every month and incubated at the in situ bottom water temperature, a seasonal pattern in excystment was observed that was independent of temperature. This pattern may be consistent with secondary dormancy, an externally modulated pattern that prevents excystment during periods that are not favorable for sustained vegetative growth. However, observation over more annual cycles is required and the duration of the mandatory dormancy period of these cysts must be determined before the seasonality of germination can be fully characterized in Alexandrium from Puget Sound. Both temperature and light were found to be important environmental factors regulating excystment, with the highest rates of excystment observed for the warmest temperature treatment (20 °C) and in the light.

14.
PLoS One ; 8(4): e59964, 2013.
Article in English | MEDLINE | ID: mdl-23596507

ABSTRACT

Behavioral sensitization to psychostimulants such as amphetamine (AMPH) is associated with synaptic modifications that are thought to underlie learning and memory. Because AMPH enhances extracellular dopamine in the striatum where dopamine and glutamate signaling are essential for learning, one might expect that the molecular and morphological changes that occur in the striatum in response to AMPH, including changes in synaptic plasticity, would affect learning. To ascertain whether AMPH sensitization affects learning, we tested wild-type mice and mice lacking NMDA receptor signaling in striatal medium spiny neurons in several different learning tests (motor learning, Pavlovian association, U-maze escape test with strategy shifting) with or without prior sensitization to AMPH. Prior sensitization had minimal effect on learning in any of these paradigms in wild-type mice and failed to restore learning in mutant mice, despite the fact that the mutant mice became sensitized by the AMPH treatment. We conclude that the changes in synaptic plasticity and many other signaling events that occur in response to AMPH sensitization are dissociable from those involved in learning the tasks used in our experiments.


Subject(s)
Amphetamine/pharmacology , Central Nervous System Sensitization/drug effects , Central Nervous System Stimulants/pharmacology , Corpus Striatum/drug effects , Corpus Striatum/physiology , Learning/drug effects , Animals , Conditioning, Psychological/drug effects , Learning Disabilities , Maze Learning/drug effects , Mice , Mice, Knockout , Neurons/drug effects , Neurons/metabolism , Psychomotor Performance/drug effects , Receptors, N-Methyl-D-Aspartate/deficiency
15.
PLoS One ; 6(11): e28168, 2011.
Article in English | MEDLINE | ID: mdl-22132236

ABSTRACT

The striatum is composed predominantly of medium spiny neurons (MSNs) that integrate excitatory, glutamatergic inputs from the cortex and thalamus, and modulatory dopaminergic inputs from the ventral midbrain to influence behavior. Glutamatergic activation of AMPA, NMDA, and metabotropic receptors on MSNs is important for striatal development and function, but the roles of each of these receptor classes remain incompletely understood. Signaling through NMDA-type glutamate receptors (NMDARs) in the striatum has been implicated in various motor and appetitive learning paradigms. In addition, signaling through NMDARs influences neuronal morphology, which could underlie their role in mediating learned behaviors. To study the role of NMDARs on MSNs in learning and in morphological development, we generated mice lacking the essential NR1 subunit, encoded by the Grin1 gene, selectively in MSNs. Although these knockout mice appear normal and display normal 24-hour locomotion, they have severe deficits in motor learning, operant conditioning and active avoidance. In addition, the MSNs from these knockout mice have smaller cell bodies and decreased dendritic length compared to littermate controls. We conclude that NMDAR signaling in MSNs is critical for normal MSN morphology and many forms of learning.


Subject(s)
Learning , Neurons/pathology , Receptors, N-Methyl-D-Aspartate/deficiency , Animals , Avoidance Learning , Body Size , Conditioning, Operant , Fear , Locomotion , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity , Receptors, N-Methyl-D-Aspartate/metabolism , Task Performance and Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...