Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Transl Psychiatry ; 1: e46, 2011 Oct 04.
Article in English | MEDLINE | ID: mdl-22833192

ABSTRACT

Younger adults with anxiety disorders are known to show an attentional bias toward negative information. Little is known regarding the role of biased attention in anxious older adults, and even less is known about the neural substrates of any such bias. Functional magnetic resonance imaging (fMRI) was used to assess the mechanisms of attentional bias in late life by contrasting predictions of a top-down model emphasizing deficient prefrontal cortex (PFC) control and a bottom-up model emphasizing amygdalar hyperreactivity. In all, 16 older generalized anxiety disorder (GAD) patients (mean age=66 years) and 12 non-anxious controls (NACs; mean age=67 years) completed the emotional Stroop task to assess selective attention to negative words. Task-related fMRI data were concurrently acquired. Consistent with hypotheses, GAD participants were slower to identify the color of negative words relative to neutral, whereas NACs showed the opposite bias, responding more quickly to negative words. During negative words (in comparison with neutral), the NAC group showed PFC activations, coupled with deactivation of task-irrelevant emotional processing regions such as the amygdala and hippocampus. By contrast, GAD participants showed PFC decreases during negative words and no differences in amygdalar activity across word types. Across all participants, greater attentional bias toward negative words was correlated with decreased PFC recruitment. A significant positive correlation between attentional bias and amygdala activation was also present, but this relationship was mediated by PFC activity. These results are consistent with reduced prefrontal attentional control in late-life GAD. Strategies to enhance top-down attentional control may be particularly relevant in late-life GAD treatment.


Subject(s)
Aging/physiology , Anxiety Disorders/physiopathology , Attention/physiology , Magnetic Resonance Imaging/methods , Prefrontal Cortex/physiopathology , Aged , Amygdala/physiopathology , Emotions/physiology , Executive Function/physiology , Humans , Middle Aged , Models, Psychological , Stroop Test
2.
Cereb Cortex ; 14(11): 1226-32, 2004 Nov.
Article in English | MEDLINE | ID: mdl-15142963

ABSTRACT

We investigated sex-related differences in task performance and brain activity in the orbitofrontal cortex (OFC) and dorsolateral prefrontal cortex (DLPFC) during performance of a decision-making task (the Iowa Gambling Task). When men and women were examined separately, men activated extensive regions of the right lateral OFC and right DLPFC, as well as the left lateral OFC. In contrast, women activated the left medial OFC. Examining sex differences directly, men showed better task performance and greater lateralized brain activity to the right hemisphere than women. This was exemplified by greater activation in a large area of the right lateral OFC of men during their performance of the Iowa Gambling Task. In contrast, women had greater activation in the left DLPFC, left medial frontal gyrus and temporal lobe during this task. Thus, brain mechanisms engaged by men and women when solving the same decision-making task are different. These observations indicate that sex-related differences contribute to the heterogeneity observed in both normal and abnormal brain functioning. These results also provide further evidence of sexual dimorphism in neurocognitive performance and brain function.


Subject(s)
Frontal Lobe/physiology , Gambling , Psychomotor Performance/physiology , Sex Characteristics , Adult , Female , Gambling/psychology , Humans , Male , Middle Aged , Statistics, Nonparametric
3.
Neuroimage ; 19(3): 1085-94, 2003 Jul.
Article in English | MEDLINE | ID: mdl-12880834

ABSTRACT

Cocaine abusers demonstrate faulty decision-making as manifested by their inability to discontinue self-destructive drug-seeking behaviors. The orbitofrontal cortex (OFC) plays an important role in decision-making. In this preliminary study we tested whether 25-day-abstinent cocaine abusers show alterations in normalized cerebral blood flow (rCBF) in the OFC using PET with (15)O during the Iowa Gambling Task (a decision-making task). This task measures the ability to weigh short-term rewards against long-term losses. A control task matched the sensorimotor aspects of the task but did not require decision-making. Cocaine abusers (N = 13) showed greater activation during performance of the Iowa Gambling Task in the right OFC and less activation in the right dorsolateral prefrontal cortex (DLPFC) and left medial prefrontal cortex (MPFC) compared to a control group (N = 13). Better Iowa Gambling Task performance was associated with greater activation in the right OFC in both groups. Also, the amount of cocaine used (grams/week) prior to the 25 days of enforced abstinence was negatively correlated with activation in the left OFC. Greater activation in the OFC in cocaine abusers compared to a control group may reflect differences in the anticipation of reward while less activation in the DLPFC and MPFC may reflect differences in planning and working memory. These findings suggest that cocaine abusers show persistent functional abnormalities in prefrontal neural networks involved in decision-making and these effects are related to cocaine abuse. Compromised decision-making could contribute to the development of addiction and undermine attempts at abstinence.


Subject(s)
Cocaine-Related Disorders/physiopathology , Decision Making/physiology , Frontal Lobe/physiopathology , Adult , Cerebrovascular Circulation , Cocaine-Related Disorders/diagnostic imaging , Female , Frontal Lobe/blood supply , Frontal Lobe/diagnostic imaging , Gambling/psychology , Humans , Image Processing, Computer-Assisted , Male , Prefrontal Cortex/blood supply , Prefrontal Cortex/diagnostic imaging , Prefrontal Cortex/physiopathology , Psychomotor Performance/physiology , Tomography, Emission-Computed
4.
Neurology ; 59(9): 1337-43, 2002 Nov 12.
Article in English | MEDLINE | ID: mdl-12427880

ABSTRACT

BACKGROUND: Although about 7 million people in the US population use marijuana at least weekly, there is a paucity of scientific data on persistent neurocognitive effects of marijuana use. OBJECTIVE: To determine if neurocognitive deficits persist in 28-day abstinent heavy marijuana users and if these deficits are dose-related to the number of marijuana joints smoked per week. METHODS: A battery of neurocognitive tests was given to 28-day abstinent heavy marijuana abusers. RESULTS: As joints smoked per week increased, performance decreased on tests measuring memory, executive functioning, psychomotor speed, and manual dexterity. When dividing the group into light, middle, and heavy user groups, the heavy group performed significantly below the light group on 5 of 35 measures and the size of the effect ranged from 3.00 to 4.20 SD units. Duration of use had little effect on neurocognitive performance. CONCLUSIONS: Very heavy use of marijuana is associated with persistent decrements in neurocognitive performance even after 28 days of abstinence. It is unclear if these decrements will resolve with continued abstinence or become progressively worse with continued heavy marijuana use.


Subject(s)
Cognition Disorders/chemically induced , Cognition/drug effects , Marijuana Abuse/complications , Adolescent , Adult , Dose-Response Relationship, Drug , Female , Humans , Male , Memory/drug effects , Neuropsychological Tests , Psychomotor Performance/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...