Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 96
Filter
1.
Article in English | MEDLINE | ID: mdl-38961449

ABSTRACT

Woody plants are encroaching across terrestrial ecosystems globally, and this has dramatic effects on how these systems function and the livelihoods of producers who rely on the land to support livestock production. Consequently, the removal of woody plants is promoted widely in the belief that it will reinstate former grasslands or open savanna. Despite this popular management approach to encroachment, we still have a relatively poor understanding of the effects of removal on society, and of alternative management practices that could balance the competing needs of pastoral production, biodiversity conservation and cultural values. This information is essential for maintaining both ecological and societal benefits in encroached systems under predicted future climate changes. In this review, we provide a comprehensive synthesis of the social-ecological perspectives of woody encroachment based on recent studies and global meta-analyses by assessing the ecological impacts of encroachment and its effects on sustainable development goals (SDGs) when woody plants are retained and when they are removed. We propose a working definition of woody encroachment based on species- and community-level characteristics; such a definition is needed to evaluate accurately the effects of encroachment. We show that encroachment is a natural process of succession rather than a sign of degradation, with encroachment resulting in an overall 8% increase in ecosystem multifunctionality. Removing woody plants can increase herbaceous plant richness, biomass and cover, but at the expense of biocrust cover. The effectiveness of woody plant removal depends on plant identity, and where, when and how they are removed. Under current management practices, either removal or retention of woody plants can induce trade-offs among ecosystem services, with no management practice maximising all SDGs [e.g. SDG2 (end hunger), SDG13 (climate change), SDG 15 (combat desertification)]. Given that encroachment of woody plants is likely to increase under future predicted hotter and drier climates, alternative management options such as carbon farming and ecotourism could be effective land uses for areas affected by encroachment.

2.
Glob Chang Biol ; 30(5): e17295, 2024 May.
Article in English | MEDLINE | ID: mdl-38804108

ABSTRACT

Plant-soil biodiversity interactions are fundamental for the functioning of terrestrial ecosystems. Yet, the existence of a set of globally distributed topsoil microbial and small invertebrate organisms consistently associated with land plants (i.e., their consistent soil-borne microbiome), together with the environmental preferences and functional capabilities of these organisms, remains unknown. We conducted a standardized field survey under 150 species of land plants, including 58 species of bryophytes and 92 of vascular plants, across 124 locations from all continents. We found that, despite the immense biodiversity of soil organisms, the land plants evaluated only shared a small fraction (less than 1%) of all microbial and invertebrate taxa that were present across contrasting climatic and soil conditions and vegetation types. These consistent taxa were dominated by generalist decomposers and phagotrophs and their presence was positively correlated with the abundance of functional genes linked to mineralization. Finally, we showed that crossing environmental thresholds in aridity (aridity index of 0.65, i.e., the transition from mesic to dry ecosystems), soil pH (5.5; i.e., the transition from acidic to strongly acidic soils), and carbon (less than 2%, the lower limit of fertile soils) can result in drastic disruptions in the associations between land plants and soil organisms, with potential implications for the delivery of soil ecosystem processes under ongoing global environmental change.


Subject(s)
Embryophyta , Microbiota , Soil Microbiology , Biodiversity , Soil/chemistry
3.
Nat Commun ; 15(1): 4141, 2024 May 16.
Article in English | MEDLINE | ID: mdl-38755127

ABSTRACT

Soil biodiversity contains the metabolic toolbox supporting organic matter decomposition and nutrient cycling in the soil. However, as soil develops over millions of years, the buildup of plant cover, soil carbon and microbial biomass may relax the dependence of soil functions on soil biodiversity. To test this hypothesis, we evaluate the within-site soil biodiversity and function relationships across 87 globally distributed ecosystems ranging in soil age from centuries to millennia. We found that within-site soil biodiversity and function relationship is negatively correlated with soil age, suggesting a stronger dependence of ecosystem functioning on soil biodiversity in geologically younger than older ecosystems. We further show that increases in plant cover, soil carbon and microbial biomass as ecosystems develop, particularly in wetter conditions, lessen the critical need of soil biodiversity to sustain function. Our work highlights the importance of soil biodiversity for supporting function in drier and geologically younger ecosystems with low microbial biomass.


Subject(s)
Biodiversity , Biomass , Carbon , Ecosystem , Soil Microbiology , Soil , Soil/chemistry , Carbon/metabolism , Carbon/analysis , Plants
5.
Nat Plants ; 10(5): 760-770, 2024 May.
Article in English | MEDLINE | ID: mdl-38609675

ABSTRACT

Perennial plants create productive and biodiverse hotspots, known as fertile islands, beneath their canopies. These hotspots largely determine the structure and functioning of drylands worldwide. Despite their ubiquity, the factors controlling fertile islands under conditions of contrasting grazing by livestock, the most prevalent land use in drylands, remain virtually unknown. Here we evaluated the relative importance of grazing pressure and herbivore type, climate and plant functional traits on 24 soil physical and chemical attributes that represent proxies of key ecosystem services related to decomposition, soil fertility, and soil and water conservation. To do this, we conducted a standardized global survey of 288 plots at 88 sites in 25 countries worldwide. We show that aridity and plant traits are the major factors associated with the magnitude of plant effects on fertile islands in grazed drylands worldwide. Grazing pressure had little influence on the capacity of plants to support fertile islands. Taller and wider shrubs and grasses supported stronger island effects. Stable and functional soils tended to be linked to species-rich sites with taller plants. Together, our findings dispel the notion that grazing pressure or herbivore type are linked to the formation or intensification of fertile islands in drylands. Rather, our study suggests that changes in aridity, and processes that alter island identity and therefore plant traits, will have marked effects on how perennial plants support and maintain the functioning of drylands in a more arid and grazed world.


Subject(s)
Herbivory , Soil , Soil/chemistry , Plants , Ecosystem , Desert Climate , Animals
6.
J Environ Manage ; 356: 120757, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38537472

ABSTRACT

The Eurasian steppe is one of the world's largest continuous areas of grassland and has an important role in supporting livestock grazing, the most ubiquitous land use on Earth. However, the Eurasian steppe is under threat, from irrational grazing utilization, climate change, and resource exploitation. We used an ensemble modeling approach to predict the current and future distribution of Stipa-dominated plant communities in three important steppe subregions; the Tibetan Alpine, Central Asian, and Black Sea-Kazakhstan subregions. We combined this with an assessment of the grazing value of 22 Stipa species, the dominant grassland species in the area, to predict how grazing value might change under future climate change predictions. We found that the effects of changing climates on grazing values differed across the three subregions. Grazing values increased in the Tibetan alpine steppe and to a lesser extent in Central Asia, but there were few changes in the Black Sea-Kazakhstan subregion. The response of different species to changing climates varied with environmental variables. Finally, our trait-based assessment of Stipa species revealed variations in grazing value, and this had major effects on the overall grazing value of the region. Our results reinforce the importance of trait-based characteristics of steppe plant species, how these traits affect grazing value, and how grazing values will change across different areas of the Eurasian steppe. Our work provides valuable insights into how different species will respond to changing climates and grazing, with important implications for sustainable management of different areas of the vast Eurasian steppe ecosystem.


Subject(s)
Ecosystem , Grassland , Animals , Plants , Poaceae , Livestock/physiology
8.
Science ; 382(6673): 894, 2023 Nov 24.
Article in English | MEDLINE | ID: mdl-37995227
9.
Microb Ecol ; 86(4): 3097-3110, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37878053

ABSTRACT

Drylands comprise one-third of Earth's terrestrial surface area and support over two billion people. Most drylands are projected to experience altered rainfall regimes, including changes in total amounts and fewer but larger rainfall events interspersed by longer periods without rain. This transition will have ecosystem-wide impacts but the long-term effects on microbial communities remain poorly quantified. We assessed belowground effects of altered rainfall regimes (+ 65% and -65% relative to ambient) at six sites in arid and semi-arid Australia over a period of three years (2016-2019) coinciding with a significant natural drought event (2017-2019). Microbial communities differed significantly among semi-arid and arid sites and across years associated with variation in abiotic factors, such as pH and carbon content, along with rainfall. Rainfall treatments induced shifts in microbial community composition only at a subset of the sites (Milparinka and Quilpie). However, differential abundance analyses revealed that several taxa, including Acidobacteria, TM7, Gemmatimonadates and Chytridiomycota, were more abundant in the wettest year (2016) and that their relative abundance decreased in drier years. By contrast, the relative abundance of oligotrophic taxa such as Actinobacteria, Alpha-proteobacteria, Planctomycetes, and Ascomycota and Basidiomycota, increased during the prolonged drought. Interestingly, fungi were shown to be more sensitive to the prolonged drought and to rainfall treatment than bacteria with Basidiomycota mostly dominant in the reduced rainfall treatment. Moreover, correlation network analyses showed more positive associations among stress-tolerant dominant taxa following the drought (i.e., 2019 compared with 2016). Our result indicates that such stress-tolerant taxa play an important role in how whole communities respond to changes in aridity. Such knowledge provides a better understanding of microbial responses to predicted increases in rainfall variability and the impact on the functioning of semi-arid and arid ecosystems.


Subject(s)
Chytridiomycota , Microbiota , Humans , Ecosystem , Droughts , Soil Microbiology , Australia , Soil/chemistry , Bacteria/genetics
10.
Proc Biol Sci ; 290(2001): 20230344, 2023 06 28.
Article in English | MEDLINE | ID: mdl-37357858

ABSTRACT

Ecological theory posits that temporal stability patterns in plant populations are associated with differences in species' ecological strategies. However, empirical evidence is lacking about which traits, or trade-offs, underlie species stability, especially across different biomes. We compiled a worldwide collection of long-term permanent vegetation records (greater than 7000 plots from 78 datasets) from a large range of habitats which we combined with existing trait databases. We tested whether the observed inter-annual variability in species abundance (coefficient of variation) was related to multiple individual traits. We found that populations with greater leaf dry matter content and seed mass were more stable over time. Despite the variability explained by these traits being low, their effect was consistent across different datasets. Other traits played a significant, albeit weaker, role in species stability, and the inclusion of multi-variate axes or phylogeny did not substantially modify nor improve predictions. These results provide empirical evidence and highlight the relevance of specific ecological trade-offs, i.e. in different resource-use and dispersal strategies, for plant populations stability across multiple biomes. Further research is, however, necessary to integrate and evaluate the role of other specific traits, often not available in databases, and intraspecific trait variability in modulating species stability.


Subject(s)
Ecosystem , Plants , Phylogeny , Seeds , Phenotype , Plant Leaves
11.
Biol Lett ; 19(4): 20220544, 2023 04.
Article in English | MEDLINE | ID: mdl-37016814

ABSTRACT

Soil-disturbing animals are common globally and play important roles in creating and maintaining healthy functional soils and landscapes. Yet many of these animals are threatened or locally extinct due to habitat loss, predation by non-native animals or poaching and poisoning. Some reintroduction and rewilding programmes have as their core aims to increase animal populations and reinstate processes that have been lost due to their extirpation. Here we use a meta-analytical approach to review the effects of soil-disturbing vertebrates on ecosystem processes, and advance the argument that they can be used to rehabilitate degraded ecosystems by altering mainly composition and function, but with fewer positive effects on structure. We describe four examples where the loss or reintroduction of soil-disturbing vertebrates leads to ecosystem state changes and highlight the role of spatial scale, covarying management changes, and species co-occurrence in modulating their effects. We discuss the advantages and disadvantages of using soil-disturbing vertebrates over mechanized engineering approaches such as pitting and furrowing, considering some advantages to include more self-sustainable and heterogeneous disturbances, creation of new habitats and added recreational values. Finally, we identify key knowledge gaps in our understanding of the use of soil-disturbing vertebrates for rehabilitating degraded ecosystems.


Subject(s)
Ecosystem , Soil , Animals , Soil/chemistry , Conservation of Natural Resources , Vertebrates , Risk Assessment
13.
Nat Commun ; 14(1): 1706, 2023 03 27.
Article in English | MEDLINE | ID: mdl-36973286

ABSTRACT

Soil contamination is one of the main threats to ecosystem health and sustainability. Yet little is known about the extent to which soil contaminants differ between urban greenspaces and natural ecosystems. Here we show that urban greenspaces and adjacent natural areas (i.e., natural/semi-natural ecosystems) shared similar levels of multiple soil contaminants (metal(loid)s, pesticides, microplastics, and antibiotic resistance genes) across the globe. We reveal that human influence explained many forms of soil contamination worldwide. Socio-economic factors were integral to explaining the occurrence of soil contaminants worldwide. We further show that increased levels of multiple soil contaminants were linked with changes in microbial traits including genes associated with environmental stress resistance, nutrient cycling, and pathogenesis. Taken together, our work demonstrates that human-driven soil contamination in nearby natural areas mirrors that in urban greenspaces globally, and highlights that soil contaminants have the potential to cause dire consequences for ecosystem sustainability and human wellbeing.


Subject(s)
Cities , Ecosystem , Internationality , Parks, Recreational , Soil Pollutants , Soil , Microbiota , Socioeconomic Factors , Soil/chemistry , Soil Microbiology , Soil Pollutants/analysis , Soil Pollutants/chemistry , Plastics
14.
Nat Ecol Evol ; 7(1): 113-126, 2023 01.
Article in English | MEDLINE | ID: mdl-36631668

ABSTRACT

While the contribution of biodiversity to supporting multiple ecosystem functions is well established in natural ecosystems, the relationship of the above- and below-ground diversity with ecosystem multifunctionality remains virtually unknown in urban greenspaces. Here we conducted a standardized survey of urban greenspaces from 56 municipalities across six continents, aiming to investigate the relationships of plant and soil biodiversity (diversity of bacteria, fungi, protists and invertebrates, and metagenomics-based functional diversity) with 18 surrogates of ecosystem functions from nine ecosystem services. We found that soil biodiversity across biomes was significantly and positively correlated with multiple dimensions of ecosystem functions, and contributed to key ecosystem services such as microbially driven carbon pools, organic matter decomposition, plant productivity, nutrient cycling, water regulation, plant-soil mutualism, plant pathogen control and antibiotic resistance regulation. Plant diversity only indirectly influenced multifunctionality in urban greenspaces via changes in soil conditions that were associated with soil biodiversity. These findings were maintained after controlling for climate, spatial context, soil properties, vegetation and management practices. This study provides solid evidence that conserving soil biodiversity in urban greenspaces is key to supporting multiple dimensions of ecosystem functioning, which is critical for the sustainability of urban ecosystems and human wellbeing.


Subject(s)
Ecosystem , Soil , Humans , Parks, Recreational , Biodiversity , Plants
15.
Nat Plants ; 9(1): 58-67, 2023 01.
Article in English | MEDLINE | ID: mdl-36543937

ABSTRACT

Woody plants (shrubs and trees) are encroaching across the globe, affecting livestock production and terrestrial ecosystem functioning. Despite the widespread practice, there has been no quantitative global assessment of whether removal of encroaching woody plants will re-instate productive grasslands and open savanna. Here we compiled a global database of 12,198 records from 524 studies on the ecosystem responses of both the encroachment and removal of woody plants, and show that removal fails to reverse encroachment impacts. Removing woody plants only reversed less than half of the reductions in herbaceous structure induced by encroachment, and woody expansion actually enhanced ecosystem functions (+8%). The effectiveness of removal varied with encroachment stage (that is, time since treatment) and the functional traits (for example, deciduousness and resprouting) of the focal woody species, and waned in drier regions. Our results suggest that assessment of woody plant communities before removal is critical to assess the likelihood of successful ecosystem recovery.


Subject(s)
Ecosystem , Wood , Plants , Trees
16.
J Cancer Educ ; 38(4): 1208-1214, 2023 08.
Article in English | MEDLINE | ID: mdl-36526919

ABSTRACT

We investigated what is being taught about HPV in US medical schools and evaluated a digital health intervention for medical students to increase their intention to provide a high-quality HPV vaccine recommendation. An online survey was emailed to Academic Deans at the 124 accredited US Schools of Medicine and Osteopathic Medicine between February and April 2018. A digital educational module was emailed to medical students in June 2020. A single-subject longitudinal study design was employed. Pre- post-survey administration measured change in knowledge, attitudes, subjective norms, perceived behavioral control, and intention to recommend HPV vaccine. Gaps in medical school curricula were found. Very few schools (~ 9%) reported teaching content on HPV prevention strategies or patient education. For the digital intervention, independent and dependent variables increased positively. Perceived behavioral control improved at significant levels as participants felt more confident addressing parents' concerns about the vaccine (p < 0.001) and more confident recommending the vaccine for patients (p < 0.05) post module. On the pre-survey, only 6% of the sample knew the most effective HPV vaccine communication style and on the post-survey 81% correctly identified it (p < 0.001). The intervention increased HPV and HPV vaccine knowledge, self-efficacy, and intention to provide a high-quality HPV vaccine recommendation to patients.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Students, Medical , Humans , Human Papillomavirus Viruses , Papillomavirus Infections/prevention & control , Vaccination , Papillomavirus Vaccines/therapeutic use , Longitudinal Studies , Health Knowledge, Attitudes, Practice , Surveys and Questionnaires , Patient Acceptance of Health Care , Schools, Medical
17.
Microbiome ; 10(1): 219, 2022 Dec 12.
Article in English | MEDLINE | ID: mdl-36503688

ABSTRACT

BACKGROUND: Little is known about the global distribution and environmental drivers of key microbial functional traits such as antibiotic resistance genes (ARGs). Soils are one of Earth's largest reservoirs of ARGs, which are integral for soil microbial competition, and have potential implications for plant and human health. Yet, their diversity and global patterns remain poorly described. Here, we analyzed 285 ARGs in soils from 1012 sites across all continents and created the first global atlas with the distributions of topsoil ARGs. RESULTS: We show that ARGs peaked in high latitude cold and boreal forests. Climatic seasonality and mobile genetic elements, associated with the transmission of antibiotic resistance, were also key drivers of their global distribution. Dominant ARGs were mainly related to multidrug resistance genes and efflux pump machineries. We further pinpointed the global hotspots of the diversity and proportions of soil ARGs. CONCLUSIONS: Together, our work provides the foundation for a better understanding of the ecology and global distribution of the environmental soil antibiotic resistome. Video Abstract.


Subject(s)
Anti-Bacterial Agents , Soil , Humans , Anti-Bacterial Agents/pharmacology , Ecology , Phenotype
18.
Science ; 378(6622): 915-920, 2022 11 25.
Article in English | MEDLINE | ID: mdl-36423285

ABSTRACT

Grazing represents the most extensive use of land worldwide. Yet its impacts on ecosystem services remain uncertain because pervasive interactions between grazing pressure, climate, soil properties, and biodiversity may occur but have never been addressed simultaneously. Using a standardized survey at 98 sites across six continents, we show that interactions between grazing pressure, climate, soil, and biodiversity are critical to explain the delivery of fundamental ecosystem services across drylands worldwide. Increasing grazing pressure reduced ecosystem service delivery in warmer and species-poor drylands, whereas positive effects of grazing were observed in colder and species-rich areas. Considering interactions between grazing and local abiotic and biotic factors is key for understanding the fate of dryland ecosystems under climate change and increasing human pressure.


Subject(s)
Biodiversity , Herbivory , Livestock , Climate Change , Soil
19.
Nature ; 610(7933): 693-698, 2022 10.
Article in English | MEDLINE | ID: mdl-36224389

ABSTRACT

Soils are the foundation of all terrestrial ecosystems1. However, unlike for plants and animals, a global assessment of hotspots for soil nature conservation is still lacking2. This hampers our ability to establish nature conservation priorities for the multiple dimensions that support the soil system: from soil biodiversity to ecosystem services. Here, to identify global hotspots for soil nature conservation, we performed a global field survey that includes observations of biodiversity (archaea, bacteria, fungi, protists and invertebrates) and functions (critical for six ecosystem services) in 615 composite samples of topsoil from a standardized survey in all continents. We found that each of the different ecological dimensions of soils-that is, species richness (alpha diversity, measured as amplicon sequence variants), community dissimilarity and ecosystem services-peaked in contrasting regions of the planet, and were associated with different environmental factors. Temperate ecosystems showed the highest species richness, whereas community dissimilarity peaked in the tropics, and colder high-latitudinal ecosystems were identified as hotspots of ecosystem services. These findings highlight the complexities that are involved in simultaneously protecting multiple ecological dimensions of soil. We further show that most of these hotspots are not adequately covered by protected areas (more than 70%), and are vulnerable in the context of several scenarios of global change. Our global estimation of priorities for soil nature conservation highlights the importance of accounting for the multidimensionality of soil biodiversity and ecosystem services to conserve soils for future generations.


Subject(s)
Biodiversity , Conservation of Natural Resources , Geographic Mapping , Soil Microbiology , Soil , Animals , Conservation of Natural Resources/methods , Soil/parasitology , Invertebrates , Archaea
20.
Health Educ Res ; 37(4): 213-226, 2022 08 01.
Article in English | MEDLINE | ID: mdl-35788319

ABSTRACT

We assessed human papillomavirus (HPV) prevention practices and HPV literacy of pediatricians, family physicians and medical students in North Carolina. An online survey was distributed to physicians in 2018, and paper surveys were collected among medical students in 2019. Surveys measured HPV literacy, HPV prevention practices and HPV prevention self-efficacy. In terms of comfort, 27% of medical students and 24% of physicians anticipated having an uncomfortable conversion when recommending the vaccine to patients. Most physicians (76%, n = 230) followed the HPV vaccine age recommendation guidelines; however, those with higher HPV vaccine knowledge were more compliant with the guidelines (P < 0.01). Female physicians were more likely to start routinely recommending the HPV vaccine to women (84%, n = 134 versus 72%, n = 92) and men (81%, n = 127 versus 71%, n = 84) between the ages of 9 and 12 years (P < 0.05). Only 27%, n = 73 of physicians and 18%, n = 19 of medical students followed/knew the 'provider-driven' HPV-recommended style. Female physicians were more likely to use this communication style (32%, n = 48 versus 20%, n = 23, P = 0.03). HPV prevention curriculum should be incorporated into medical programs. The gender-related practice patterns found indicate a need for training of male providers specifically. Quality improvement efforts are needed for all physicians to strengthen vaccine communication, recommendation practices and guideline adherence.


Subject(s)
Papillomavirus Infections , Papillomavirus Vaccines , Physicians , Child , Female , Health Knowledge, Attitudes, Practice , Humans , Male , North Carolina , Papillomavirus Infections/prevention & control , Practice Patterns, Physicians' , Surveys and Questionnaires , Vaccination
SELECTION OF CITATIONS
SEARCH DETAIL
...