Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
J Infect Dis ; 228(Suppl 7): S660-S670, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37171813

ABSTRACT

BACKGROUND: The family Filoviridae consists of several virus members known to cause significant mortality and disease in humans. Among these, Ebola virus (EBOV), Marburg virus (MARV), Sudan virus (SUDV), and Bundibugyo virus (BDBV) are considered the deadliest. The vaccine, Ervebo, was shown to rapidly protect humans against Ebola disease, but is indicated only for EBOV infections with limited cross-protection against other filoviruses. Whether multivalent formulations of similar recombinant vesicular stomatitis virus (rVSV)-based vaccines could likewise confer rapid protection is unclear. METHODS: Here, we tested the ability of an attenuated, quadrivalent panfilovirus VesiculoVax vaccine (rVSV-Filo) to elicit fast-acting protection against MARV, EBOV, SUDV, and BDBV. Groups of cynomolgus monkeys were vaccinated 7 days before exposure to each of the 4 viral pathogens. All subjects (100%) immunized 1 week earlier survived MARV, SUDV, and BDBV challenge; 80% survived EBOV challenge. Survival correlated with lower viral load, higher glycoprotein-specific immunoglobulin G titers, and the expression of B-cell-, cytotoxic cell-, and antigen presentation-associated transcripts. CONCLUSIONS: These results demonstrate multivalent VesiculoVax vaccines are suitable for filovirus outbreak management. The highly attenuated nature of the rVSV-Filo vaccine may be preferable to the Ervebo "delta G" platform, which induced adverse events in a subset of recipients.


Subject(s)
Ebola Vaccines , Ebolavirus , Hemorrhagic Fever, Ebola , Marburgvirus , Viral Vaccines , Humans , Animals , Vaccines, Attenuated , Macaca fascicularis , Vesiculovirus/genetics , Vesicular stomatitis Indiana virus , Antibodies, Viral
2.
PLoS Negl Trop Dis ; 16(5): e0010433, 2022 05.
Article in English | MEDLINE | ID: mdl-35622847

ABSTRACT

BACKGROUND: Marburg virus (MARV), an Ebola-like virus, remains an eminent threat to public health as demonstrated by its high associated mortality rate (23-90%) and recent emergence in West Africa for the first time. Although a recombinant vesicular stomatitis virus (rVSV)-based vaccine (Ervebo) is licensed for Ebola virus disease (EVD), no approved countermeasures exist against MARV. Results from clinical trials indicate Ervebo prevents EVD in 97.5-100% of vaccinees 10 days onwards post-immunization. METHODOLOGY/FINDINGS: Given the rapid immunogenicity of the Ervebo platform against EVD, we tested whether a similar, but highly attenuated, rVSV-based Vesiculovax vector expressing the glycoprotein (GP) of MARV (rVSV-N4CT1-MARV-GP) could provide swift protection against Marburg virus disease (MVD). Here, groups of cynomolgus monkeys were vaccinated 7, 5, or 3 days before exposure to a lethal dose of MARV (Angola variant). All subjects (100%) immunized one week prior to challenge survived; 80% and 20% of subjects survived when vaccinated 5- and 3-days pre-exposure, respectively. Lethality was associated with higher viral load and sustained innate immunity transcriptional signatures, whereas survival correlated with development of MARV GP-specific antibodies and early expression of predicted NK cell-, B-cell-, and cytotoxic T-cell-type quantities. CONCLUSIONS/SIGNIFICANCE: These results emphasize the utility of Vesiculovax vaccines for MVD outbreak management. The highly attenuated nature of rVSV-N4CT1 vaccines, which are clinically safe in humans, may be preferable to vaccines based on the same platform as Ervebo (rVSV "delta G" platform), which in some trial participants induced vaccine-related adverse events in association with viral replication including arthralgia/arthritis, dermatitis, and cutaneous vasculitis.


Subject(s)
Ebolavirus , Hemorrhagic Fever, Ebola , Marburg Virus Disease , Marburgvirus , Viral Vaccines , Animals , Antibodies, Viral , Glycoproteins , Humans , Macaca fascicularis , Marburg Virus Disease/prevention & control , Vaccines, Attenuated , Vesiculovirus/genetics
3.
Vaccine ; 39(38): 5436-5441, 2021 09 07.
Article in English | MEDLINE | ID: mdl-34373117

ABSTRACT

Auro Vaccines LLC has developed a protein vaccine to prevent disease from Nipah and Hendra virus infection that employs a recombinant soluble Hendra glycoprotein (HeV-sG) adjuvanted with aluminum phosphate. This vaccine is currently under clinical evaluation in a Phase 1 study. The Benefit-Risk Assessment of VAccines by TechnolOgy Working Group (BRAVATO; ex-V3SWG) has prepared a standardized template to describe the key considerations for the benefit-risk assessment of protein vaccines. This will help key stakeholders to assess potential safety issues and understand the benefit-risk of such a vaccine platform. The structured and standardized assessment provided by the template may also help contribute to improved public acceptance and communication of licensed protein vaccines.


Subject(s)
Hendra Virus , Henipavirus Infections , Glycoproteins , Henipavirus Infections/prevention & control , Humans , Risk Assessment , Vaccines, Synthetic
4.
Sci Rep ; 10(1): 3071, 2020 02 20.
Article in English | MEDLINE | ID: mdl-32080323

ABSTRACT

Postexposure immunization can prevent disease and reduce transmission following pathogen exposure. The rapid immunostimulatory properties of recombinant vesicular stomatitis virus (rVSV)-based vaccines make them suitable postexposure treatments against the filoviruses Ebola virus and Marburg virus (MARV); however, the mechanisms that drive this protection are undefined. Previously, we reported 60-75% survival of rhesus macaques treated with rVSV vectors expressing MARV glycoprotein (GP) 20-30 minutes after a low dose exposure to the most pathogenic variant of MARV, Angola. Survival in this model was linked to production of GP-specific antibodies and lower viral load. To confirm these results and potentially identify novel correlates of postexposure protection, we performed a similar experiment, but analyzed plasma cytokine levels, frequencies of immune cell subsets, and the transcriptional response to infection in peripheral blood. In surviving macaques (80-89%), we observed induction of genes mapping to antiviral and interferon-related pathways early after treatment and a higher percentage of T helper 1 (Th1) and NK cells. In contrast, the response of non-surviving macaques was characterized by hypercytokinemia; a T helper 2 signature; recruitment of low HLA-DR expressing monocytes and regulatory T-cells; and transcription of immune checkpoint (e.g., PD-1, LAG3) genes. These results suggest dysregulated immunoregulation is associated with poor prognosis, whereas early innate signaling and Th1-skewed immunity are important for survival.


Subject(s)
Marburg Virus Disease/immunology , Marburg Virus Disease/virology , Marburgvirus/immunology , Post-Exposure Prophylaxis , Viral Vaccines/immunology , Animals , Antibodies, Viral/biosynthesis , Antibodies, Viral/immunology , Cytokines/blood , Cytotoxicity, Immunologic , Dose-Response Relationship, Immunologic , Down-Regulation/genetics , Female , Inflammation/blood , Inflammation/immunology , Interferons/genetics , Interferons/metabolism , Killer Cells, Natural/immunology , Macaca mulatta/immunology , Macaca mulatta/virology , Male , Marburg Virus Disease/blood , Marburg Virus Disease/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Recombination, Genetic/genetics , T-Lymphocytes, Helper-Inducer/immunology , Th1 Cells/immunology , Th2 Cells/immunology , Transcriptome/genetics , Up-Regulation/genetics , Vesiculovirus/genetics , Viral Load/immunology
5.
Lancet Infect Dis ; 20(4): 455-466, 2020 04.
Article in English | MEDLINE | ID: mdl-31952923

ABSTRACT

BACKGROUND: The safety and immunogenicity of a highly attenuated recombinant vesicular stomatitis virus (rVSV) expressing HIV-1 gag (rVSVN4CT1-HIV-1gag1) was shown in previous phase 1 clinical studies. An rVSV vector expressing Ebola virus glycoprotein (EBOV-GP) in place of HIV-1 gag (rVSVN4CT1-EBOVGP1) showed single-dose protection from lethal challenge with low passage Ebola virus in non-human primates. We aimed to evaluate the safety and immunogenicity of the rVSVN4CT1-EBOVGP1 vaccine in healthy adults. METHODS: We did a randomised double-blind, placebo-controlled, phase 1 dose-escalation study at a single clinical site (Optimal Research) in Melbourne, FL, USA. Eligible participants were healthy men and non-pregnant women aged 18-60 years, with a body-mass index (BMI) of less than 40 kg/m2, no history of filovirus infection, VSV infection, or receipt of rVSV in previous studies, and who had not visited regions where Ebola virus outbreaks have occurred. Three cohorts were enrolled to assess a low (2·5 × 104 plaque forming units [PFU]), intermediate (2 × 105 PFU), or high dose (1·8 × 106 PFU) of the vaccine. Participants within each cohort were randomly allocated (10:3) to receive vaccine or placebo by intramuscular injection in a homologous prime and boost regimen, with 4 weeks between doses. All syringes were masked with syringe sleeves; participants and study site staff were not blinded to dose level but were blinded to active vaccine and placebo. The primary outcomes were safety and tolerability; immunogenicity, assessed as GP-specific humoral immune response (at 2 weeks after each dose) and cellular immune response (at 1 and 2 weeks after each dose), was a secondary outcome. All randomised participants were included in primary and safety analyses. This trial is registered with ClinicalTrials.gov, NCT02718469. FINDINGS: Between Dec 22, 2015, and Sept 15, 2016, 39 individuals (18 [46%] men and 21 [54%] women, mean age 51 years [SD 10]) were enrolled, with ten participants receiving the vaccine and three participants receiving placebo in each of three cohorts. One participant in the intermediate dose cohort was withdrawn from the study because of a diagnosis of invasive ductal breast carcinoma 24 days after the first vaccination, which was considered unrelated to the vaccine. No severe adverse events were observed. Solicited local adverse events occurred in ten (26%) of 39 participants after the first dose and nine (24%) of 38 participants after the second dose; the events lasted 3 days or less, were predominantly injection site tenderness (17 events) and injection site pain (ten events), and were either mild (19 events) or moderate (ten events) in intensity. Systemic adverse events occurred in 13 (33%) of 39 participants after the first dose and eight (21%) of 38 participants after the second dose; the events were mild (45 events) or moderate (11 events) in severity, and the most common events were malaise or fatigue (13 events) and headache (12 events). Arthritis and maculopapular, vesicular, or purpuric rash distal to the vaccination site(s) were not reported. A GP-specific IgG response was detected in all vaccine recipients after two doses (and IgG response frequency was 100% after a single high dose), and an Ebola virus neutralising response was detected in 100% of participants in the high-dose cohort. INTERPRETATION: The rVSVN4CT1-EBOVGP1 vaccine was well tolerated at all dose levels tested and was immunogenic despite a high degree of attenuation. The combined safety and immunogenicity profile of the rVSVN4CT1-EBOVGP1 vaccine vector support phase 1-2 clinical evaluation. FUNDING: US Department of Defense Joint Program Executive Office for Chemical, Biological, Radiological and Nuclear Defense: Joint Project Manager for Chemical, Biological, Radiological and Nuclear Medical.


Subject(s)
Ebola Vaccines/immunology , Ebolavirus/immunology , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/prevention & control , Immunogenicity, Vaccine , Safety , Double-Blind Method , Ebola Vaccines/administration & dosage , Female , Healthy Volunteers , Humans , Male , Middle Aged , Vaccination , Vaccines, Attenuated/immunology
6.
J Clin Invest ; 130(1): 539-551, 2020 01 02.
Article in English | MEDLINE | ID: mdl-31820871

ABSTRACT

Recent occurrences of filoviruses and the arenavirus Lassa virus (LASV) in overlapping endemic areas of Africa highlight the need for a prophylactic vaccine that would confer protection against all of these viruses that cause lethal hemorrhagic fever (HF). We developed a quadrivalent formulation of VesiculoVax that contains recombinant vesicular stomatitis virus (rVSV) vectors expressing filovirus glycoproteins and that also contains a rVSV vector expressing the glycoprotein of a lineage IV strain of LASV. Cynomolgus macaques were vaccinated twice with the quadrivalent formulation, followed by challenge 28 days after the boost vaccination with each of the 3 corresponding filoviruses (Ebola, Sudan, Marburg) or a heterologous contemporary lineage II strain of LASV. Serum IgG and neutralizing antibody responses specific for all 4 glycoproteins were detected in all vaccinated animals. A modest and balanced cell-mediated immune response specific for the glycoproteins was also detected in most of the vaccinated macaques. Regardless of the level of total glycoprotein-specific immune response detected after vaccination, all immunized animals were protected from disease and death following lethal challenges. These findings indicate that vaccination with attenuated rVSV vectors each expressing a single HF virus glycoprotein may provide protection against those filoviruses and LASV most commonly responsible for outbreaks of severe HF in Africa.


Subject(s)
Antibodies, Viral/immunology , Genetic Vectors , Immunoglobulin G/immunology , Lassa Fever/prevention & control , Lassa virus/immunology , Vesiculovirus , Viral Vaccines/immunology , Animals , Humans , Lassa Fever/genetics , Lassa Fever/immunology , Lassa virus/genetics , Macaca fascicularis , Viral Vaccines/genetics
7.
PLoS One ; 13(9): e0202753, 2018.
Article in English | MEDLINE | ID: mdl-30235286

ABSTRACT

BACKGROUND: The addition of plasmid cytokine adjuvants, electroporation, and live attenuated viral vectors may further optimize immune responses to DNA vaccines in heterologous prime-boost combinations. The objective of this study was to test the safety and tolerability of a novel prime-boost vaccine regimen incorporating these strategies with different doses of IL-12 plasmid DNA adjuvant. METHODS: In a phase 1 study, 88 participants received an HIV-1 multiantigen (gag/pol, env, nef/tat/vif) DNA vaccine (HIV-MAG, 3000 µg) co-administered with IL-12 plasmid DNA adjuvant at 0, 250, 1000, or 1500 µg (N = 22/group) given intramuscularly with electroporation (Ichor TriGrid™ Delivery System device) at 0, 1 and 3 months; followed by attenuated recombinant vesicular stomatitis virus, serotype Indiana, expressing HIV-1 Gag (VSV-Gag), 3.4 ⊆ 107 plaque-forming units (PFU), at 6 months; 12 others received placebo. Injections were in both deltoids at each timepoint. Participants were monitored for safety and tolerability for 15 months. RESULTS: The dose of IL-12 pDNA did not increase pain scores, reactogenicity, or adverse events with the co-administered DNA vaccine, or following the VSV-Gag boost. Injection site pain and reactogenicity were common with intramuscular injections with electroporation, but acceptable to most participants. VSV-Gag vaccine often caused systemic reactogenicity symptoms, including a viral syndrome (in 41%) of fever, chills, malaise/fatigue, myalgia, and headache; and decreased lymphocyte counts 1 day after vaccination. CONCLUSIONS: HIV-MAG DNA vaccine given by intramuscular injection with electroporation was safe at all doses of IL-12 pDNA. The VSV-Gag vaccine at this dose was associated with fever and viral symptoms in some participants, but the vaccine regimens were safe and generally well-tolerated. TRIAL REGISTRATION: Clinical Trials.gov NCT01578889.


Subject(s)
AIDS Vaccines/administration & dosage , Genetic Vectors/administration & dosage , Interleukin-12/genetics , Vaccines, Attenuated/administration & dosage , Vaccines, DNA/administration & dosage , Vesicular stomatitis Indiana virus/genetics , AIDS Vaccines/adverse effects , Adult , Combined Modality Therapy , Double-Blind Method , Electroporation , Female , Genetic Vectors/adverse effects , HIV-1 , Healthy Volunteers , Humans , Immunization, Secondary , Injections, Intramuscular , Male , Middle Aged , Plasmids/genetics , Vaccines, Attenuated/adverse effects , Vaccines, DNA/adverse effects , Young Adult , gag Gene Products, Human Immunodeficiency Virus
8.
Mol Ther Oncolytics ; 10: 1-13, 2018 Sep 28.
Article in English | MEDLINE | ID: mdl-29998190

ABSTRACT

Immunotherapy for HPVPOS malignancies is attractive because well-defined, viral, non-self tumor antigens exist as targets. Several approaches to vaccinate therapeutically against HPV E6 and E7 antigens have been adopted, including viral platforms such as VSV. A major advantage of VSV expressing these antigens is that VSV also acts as an oncolytic virus, leading to direct tumor cell killing and induction of effective anti-E6 and anti-E7 T cell responses. We have also shown that addition of immune adjuvant genes, such as IFNß, further enhances safety and/or efficacy of VSV-based oncolytic immunovirotherapies. However, multiple designs of the viral vector are possible-with respect to levels of immunogen expression and method of virus attenuation-and optimal designs have not previously been tested head-to-head. Here, we tested three different VSV engineered to express a non-oncogenic HPV16 E7/6 fusion protein for their immunotherapeutic and oncolytic properties. We assessed their profiles of efficacy and toxicity against HPVPOS and HPVNEG murine tumor models and determined the optimal route of administration. Our data show that VSV is an excellent platform for the oncolytic immunovirotherapy of tumors expressing HPV target antigens, combining a balance of efficacy and safety suitable for evaluation in a first-in-human clinical trial.

9.
J Infect Dis ; 218(suppl_5): S582-S587, 2018 11 22.
Article in English | MEDLINE | ID: mdl-29939296

ABSTRACT

A recombinant vesicular stomatitis virus (rVSV) expressing the Marburg virus (MARV) Musoke variant glycoprotein fully protects macaques against 2 MARV variants and Ravn virus as a preventive vaccine and MARV variant Musoke as a postexposure treatment. To evaluate postexposure efficacy against the most pathogenic MARV variant, Angola, we engineered rVSVs expressing homologous Angola glycoprotein. Macaques were challenged with high or low doses of variant Angola and treated 20-30 minutes after exposure. A total of 25% and 60%-75% of treated macaques survived the high-dose and low-dose challenges, respectively. The more rapid disease progression of variant Angola versus variant Musoke may account for the incomplete protection observed.


Subject(s)
Genetic Vectors , Marburg Virus Disease/prevention & control , Marburgvirus/immunology , Vesicular stomatitis Indiana virus/genetics , Viral Vaccines/immunology , Animals , Female , Macaca mulatta , Male , Vaccines, Synthetic/immunology
10.
J Virol ; 92(3)2018 02 01.
Article in English | MEDLINE | ID: mdl-29142131

ABSTRACT

Previous studies demonstrated that a single intramuscular (i.m.) dose of an attenuated recombinant vesicular stomatitis virus (rVSV) vector (VesiculoVax vector platform; rVSV-N4CT1) expressing the glycoprotein (GP) from the Mayinga strain of Zaire ebolavirus (EBOV) protected nonhuman primates (NHPs) from lethal challenge with EBOV strains Kikwit and Makona. Here, we studied the immunogenicities of an expanded range of attenuated rVSV vectors expressing filovirus GP in mice. Based on data from those studies, an optimal attenuated trivalent rVSV vector formulation was identified that included rVSV vectors expressing EBOV, Sudan ebolavirus (SUDV), and the Angola strain of Marburg marburgvirus (MARV) GPs. NHPs were vaccinated with a single dose of the trivalent formulation, followed by lethal challenge 28 days later with each of the three corresponding filoviruses. At day 14 postvaccination, a serum IgG response specific for all three GPs was detected in all the vaccinated macaques. A modest and balanced cell-mediated immune response specific for each GP was also detected in a majority of the vaccinated macaques. No matter the level of total GP-specific immune response detected postvaccination, all the vaccinated macaques were protected from disease and death following lethal challenge with each of the three filoviruses. These findings indicate that vaccination with a single dose of attenuated rVSV-N4CT1 vectors each expressing a single filovirus GP may provide protection against the filoviruses most commonly responsible for outbreaks of hemorrhagic fever in sub-Saharan Africa.IMPORTANCE The West African Ebola virus Zaire outbreak in 2013 showed that the disease was not only a regional concern, but a worldwide problem, and highlighted the need for a safe and efficacious vaccine to be administered to the populace. However, other endemic pathogens, like Ebola virus Sudan and Marburg, also pose an important health risk to the public and therefore require development of a vaccine prior to the occurrence of an outbreak. The significance of our research was the development of a blended trivalent filovirus vaccine that elicited a balanced immune response when administered as a single dose and provided complete protection against a lethal challenge with all three filovirus pathogens.


Subject(s)
Ebolavirus/metabolism , Glycoproteins/metabolism , Hemorrhagic Fever, Ebola/prevention & control , Marburg Virus Disease/prevention & control , Marburgvirus/metabolism , Vesiculovirus/genetics , Viral Vaccines/administration & dosage , Animals , Antibodies, Viral/metabolism , Ebolavirus/immunology , Glycoproteins/genetics , Glycoproteins/immunology , Hemorrhagic Fever, Ebola/immunology , Immunoglobulin G/metabolism , Injections, Intramuscular , Macaca fascicularis , Marburg Virus Disease/immunology , Marburgvirus/immunology , Mice , Vaccination , Vaccines, Attenuated , Vaccines, Synthetic , Vesiculovirus/metabolism , Viral Proteins/genetics , Viral Proteins/immunology , Viral Proteins/metabolism , Viral Vaccines/immunology
11.
Sci Transl Med ; 9(419)2017 Dec 06.
Article in English | MEDLINE | ID: mdl-29212716

ABSTRACT

Despite substantial clinical benefits, complete eradication of HIV has not been possible using antiretroviral therapy (ART) alone. Strategies that can either eliminate persistent viral reservoirs or boost host immunity to prevent rebound of virus from these reservoirs after discontinuation of ART are needed; one possibility is therapeutic vaccination. We report the results of a randomized, placebo-controlled trial of a therapeutic vaccine regimen in patients in whom ART was initiated during the early stage of HIV infection and whose immune system was anticipated to be relatively intact. The objectives of our study were to determine whether the vaccine was safe and could induce an immune response that would maintain suppression of plasma viremia after discontinuation of ART. Vaccinations were well tolerated with no serious adverse events but produced only modest augmentation of existing HIV-specific CD4+ T cell responses, with little augmentation of CD8+ T cell responses. Compared with placebo, the vaccination regimen had no significant effect on the kinetics or magnitude of viral rebound after interruption of ART and no impact on the size of the HIV reservoir in the CD4+ T cell compartment. Notably, 26% of subjects in the placebo arm exhibited sustained suppression of viremia (<400 copies/ml) after treatment interruption, a rate of spontaneous suppression higher than previously reported. Our findings regarding the degree and kinetics of plasma viral rebound after ART interruption have potentially important implications for the design of future trials testing interventions aimed at achieving ART-free control of HIV infection.


Subject(s)
AIDS Vaccines/therapeutic use , HIV Infections/drug therapy , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/metabolism , HIV Infections/immunology , HIV-1/immunology , HIV-1/pathogenicity , Humans , Viral Load/drug effects , Viremia/drug therapy , Viremia/immunology
12.
Clin Vaccine Immunol ; 24(11)2017 Nov.
Article in English | MEDLINE | ID: mdl-28931520

ABSTRACT

The HIV Vaccine Trials Network (HVTN) 087 vaccine trial assessed the effect of increasing doses of pIL-12 (interleukin-12 delivered as plasmid DNA) adjuvant on the immunogenicity of an HIV-1 multiantigen (MAG) DNA vaccine delivered by electroporation and boosted with a vaccine comprising an attenuated vesicular stomatitis virus expressing HIV-1 Gag (VSV-Gag). We randomized 100 healthy adults to receive placebo or 3 mg HIV-MAG DNA vaccine (ProfectusVax HIV-1 gag/pol or ProfectusVax nef/tat/vif, env) coadministered with pIL-12 at 0, 250, 1,000, or 1,500 µg intramuscularly by electroporation at 0, 1, and 3 months followed by intramuscular inoculation with 3.4 × 107 PFU VSV-Gag vaccine at 6 months. Immune responses were assessed after the prime and boost and 6 months after the last vaccination. High-dose pIL-12 increased the magnitude of CD8+ T-cell responses postboost compared to no pIL-12 (P = 0.02), while CD4+ T-cell responses after the prime were higher in the absence of pIL-12 than with low- and medium-dose pIL-12 (P ≤ 0.05). The VSV boost increased Gag-specific CD4+ and CD8+ T-cell responses in all groups (P < 0.001 for CD4+ T cells), inducing a median of four Gag epitopes in responders. Six to 9 months after the boost, responses decreased in magnitude, but CD8+ T-cell response rates were maintained. The addition of a DNA prime dramatically improved responses to the VSV vaccine tested previously in the HVTN 090 trial, leading to broad epitope targeting and maintained CD8+ T-cell response rates at early memory. The addition of high-dose pIL-12 given with a DNA prime by electroporation and boosted with VSV-Gag increased the CD8+ T-cell responses but decreased the CD4+ responses. This approach may be advantageous in reshaping the T-cell responses to a variety of chronic infections or tumors. (This study has been registered at ClinicalTrials.gov under registration no. NCT01578889.).


Subject(s)
AIDS Vaccines/immunology , CD8-Positive T-Lymphocytes/immunology , Immunogenicity, Vaccine , Interleukin-12/immunology , Vaccines, DNA/immunology , Vesicular stomatitis Indiana virus/genetics , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic , Adult , Epitope Mapping , Female , Genetic Vectors , HIV Infections/immunology , HIV Infections/prevention & control , HIV-1/immunology , Humans , Immunization, Secondary , Interleukin-12/genetics , Male , Middle Aged , Plasmids , Vaccination , Vaccines, DNA/administration & dosage , Vesicular stomatitis Indiana virus/immunology , Young Adult , gag Gene Products, Human Immunodeficiency Virus/genetics , gag Gene Products, Human Immunodeficiency Virus/immunology
13.
J Virol ; 91(8)2017 04 15.
Article in English | MEDLINE | ID: mdl-28148802

ABSTRACT

The demonstrated clinical efficacy of a recombinant vesicular stomatitis virus (rVSV) vaccine vector has stimulated the investigation of additional serologically distinct Vesiculovirus vectors as therapeutic and/or prophylactic vaccine vectors to combat emerging viral diseases. Among these viral threats are the encephalitic alphaviruses Venezuelan equine encephalitis virus (VEEV) and Eastern equine encephalitis virus (EEEV), which have demonstrated potential for natural disease outbreaks, yet no licensed vaccines are available in the event of an epidemic. Here we report the rescue of recombinant Isfahan virus (rISFV) from genomic cDNA as a potential new vaccine vector platform. The rISFV genome was modified to attenuate virulence and express the VEEV and EEEV E2/E1 surface glycoproteins as vaccine antigens. A single dose of the rISFV vaccine vectors elicited neutralizing antibody responses and protected mice from lethal VEEV and EEEV challenges at 1 month postvaccination as well as lethal VEEV challenge at 8 months postvaccination. A mixture of rISFV vectors expressing the VEEV and EEEV E2/E1 glycoproteins also provided durable, single-dose protection from lethal VEEV and EEEV challenges, demonstrating the potential for a multivalent vaccine formulation. These findings were paralleled in studies with an attenuated form of rVSV expressing the VEEV E2/E1 glycoproteins. Both the rVSV and rISFV vectors were attenuated by using an approach that has demonstrated safety in human trials of an rVSV/HIV-1 vaccine. Vaccines based on either of these vaccine vector platforms may present a safe and effective approach to prevent alphavirus-induced disease in humans.IMPORTANCE This work introduces rISFV as a novel vaccine vector platform that is serologically distinct and phylogenetically distant from VSV. The rISFV vector has been attenuated by an approach used for an rVSV vector that has demonstrated safety in clinical studies. The vaccine potential of the rISFV vector was investigated in a well-established alphavirus disease model. The findings indicate the feasibility of producing a safe, efficacious, multivalent vaccine against the encephalitic alphaviruses VEEV and EEEV, both of which can cause fatal disease. This work also demonstrates the efficacy of an attenuated rVSV vector that has already demonstrated safety and immunogenicity in multiple HIV-1 phase I clinical studies. The absence of serological cross-reactivity between rVSV and rISFV and their phylogenetic divergence within the Vesiculovirus genus indicate potential for two stand-alone vaccine vector platforms that could be used to target multiple bacterial and/or viral agents in successive immunization campaigns or as heterologous prime-boost agents.


Subject(s)
Drug Carriers , Encephalitis Virus, Eastern Equine/immunology , Encephalitis Virus, Venezuelan Equine/immunology , Encephalomyelitis, Equine/prevention & control , Vesiculovirus/genetics , Viral Vaccines/immunology , Animals , Antibodies, Neutralizing/blood , Antibodies, Viral/blood , Disease Models, Animal , Encephalitis Virus, Eastern Equine/genetics , Encephalitis Virus, Venezuelan Equine/genetics , Glycoproteins/genetics , Glycoproteins/immunology , Membrane Proteins/genetics , Membrane Proteins/immunology , Mice , Survival Analysis , Vaccines, Synthetic/genetics , Vaccines, Synthetic/immunology , Viral Vaccines/genetics
14.
Viral Immunol ; 30(3): 178-195, 2017 04.
Article in English | MEDLINE | ID: mdl-28085634

ABSTRACT

Vaccination is a proven intervention against human viral diseases; however, success against Herpes Simplex Virus 2 (HSV-2) remains elusive. Most HSV-2 vaccines tested in humans to date contained just one or two immunogens, such as the virion attachment receptor glycoprotein D (gD) and/or the envelope fusion protein, glycoprotein B (gB). At least three factors may have contributed to the failures of subunit-based HSV-2 vaccines. First, immune responses directed against one or two viral antigens may lack sufficient antigenic breadth for efficacy. Second, the antibody responses elicited by these vaccines may have lacked necessary Fc-mediated effector functions. Third, these subunit vaccines may not have generated necessary protective cellular immune responses. We hypothesized that a polyvalent combination of HSV-2 antigens expressed from a DNA vaccine with an adjuvant that polarizes immune responses toward a T helper 1 (Th1) phenotype would compose a more effective vaccine. We demonstrate that delivery of DNA expressing full-length HSV-2 glycoprotein immunogens by electroporation with the adjuvant interleukin 12 (IL-12) generates substantially greater protection against a high-dose HSV-2 vaginal challenge than a recombinant gD subunit vaccine adjuvanted with alum and monophosphoryl lipid A (MPL). Our results further show that DNA vaccines targeting optimal combinations of surface glycoproteins provide better protection than gD alone and provide similar survival benefits and disease symptom reductions compared with a potent live attenuated HSV-2 0ΔNLS vaccine, but that mice vaccinated with HSV-2 0ΔNLS clear the virus much faster. Together, our data indicate that adjuvanted multivalent DNA vaccines hold promise for an effective HSV-2 vaccine, but that further improvements may be required.


Subject(s)
Adjuvants, Immunologic/administration & dosage , Herpes Genitalis/prevention & control , Herpesvirus 2, Human/immunology , Herpesvirus Vaccines/immunology , Interleukin-12/administration & dosage , Vaccines, DNA/immunology , Animals , Disease Models, Animal , Glycoproteins/immunology , Herpesvirus Vaccines/administration & dosage , Membrane Proteins/immunology , Mice , Survival Analysis , Treatment Outcome , Vaccines, DNA/administration & dosage , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/immunology , Vaccines, Synthetic/administration & dosage , Vaccines, Synthetic/immunology
15.
PLoS One ; 10(8): e0134287, 2015.
Article in English | MEDLINE | ID: mdl-26252526

ABSTRACT

BACKGROUND: Strategies to enhance the immunogenicity of DNA vaccines in humans include i) co-administration of molecular adjuvants, ii) intramuscular administration followed by in vivo electroporation (IM/EP) and/or iii) boosting with a different vaccine. Combining these strategies provided protection of macaques challenged with SIV; this clinical trial was designed to mimic the vaccine regimen in the SIV study. METHODS: Seventy five healthy, HIV-seronegative adults were enrolled into a phase 1, randomized, double-blind, placebo-controlled trial. Multi-antigenic HIV (HIVMAG) plasmid DNA (pDNA) vaccine alone or co-administered with pDNA encoding human Interleukin 12 (IL-12) (GENEVAX IL-12) given by IM/EP using the TriGrid Delivery System was tested in different prime-boost regimens with recombinant Ad35 HIV vaccine given IM. RESULTS: All local reactions but one were mild or moderate. Systemic reactions and unsolicited adverse events including laboratory abnormalities did not differ between vaccine and placebo recipients. No serious adverse events (SAEs) were reported. T cell and antibody response rates after HIVMAG (x3) prime-Ad35 (x1) boost were independent of IL-12, while the magnitude of interferon gamma (IFN-γ) ELISPOT responses was highest after HIVMAG (x3) without IL-12. The quality and phenotype of T cell responses shown by intracellular cytokine staining (ICS) were similar between groups. Inhibition of HIV replication by autologous T cells was demonstrated after HIVMAG (x3) prime and was boosted after Ad35. HIV specific antibodies were detected only after Ad35 boost, although there was a priming effect with 3 doses of HIVMAG with or without IL-12. No anti-IL-12 antibodies were detected. CONCLUSION: The vaccines were safe, well tolerated and moderately immunogenic. Repeated administration IM/EP was well accepted. An adjuvant effect of co-administered plasmid IL-12 was not detected. TRIAL REGISTRATION: ClinicalTrials.gov NCT01496989.


Subject(s)
AIDS Vaccines/adverse effects , DNA, Viral/adverse effects , DNA, Viral/immunology , Electroporation , HIV Infections/immunology , Immunization, Secondary , Interleukin-12/immunology , AIDS Vaccines/immunology , Adenoviridae/metabolism , Adult , CD8-Positive T-Lymphocytes/immunology , Demography , Double-Blind Method , Enzyme-Linked Immunospot Assay , Female , Flow Cytometry , HIV Antibodies/immunology , Humans , Immunity, Cellular , Immunity, Humoral , Immunization , Interferon-gamma/metabolism , Male , Middle Aged , Placebos , Young Adult
16.
Open Forum Infect Dis ; 2(3): ofv082, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26199949

ABSTRACT

Background. We report the first-in-human safety and immunogenicity evaluation of a highly attenuated, replication-competent recombinant vesicular stomatitis virus (rVSV) human immunodeficiency virus (HIV)-1 vaccine. Methods. Sixty healthy, HIV-1-uninfected adults were enrolled in a randomized, double-blinded, placebo-controlled dose-escalation study. Groups of 12 participants received rVSV HIV-1 gag vaccine at 5 dose levels (4.6 × 10(3) to 3.4 × 10(7) particle forming units) (N = 10/group) or placebo (N = 2/group), delivered intramuscularly as bilateral injections at 0 and 2 months. Safety monitoring included VSV cultures from blood, urine, saliva, and swabs of oral lesions. Vesicular stomatitis virus-neutralizing antibodies, T-cell immunogenicity, and HIV-1 specific binding antibodies were assessed. Results. Local and systemic reactogenicity symptoms were mild to moderate and increased with dose. No severe reactogenicity or product-related serious adverse events were reported, and all rVSV cultures were negative. All vaccine recipients became seropositive for VSV after 2 vaccinations. gag-specific T-cell responses were detected in 63% of participants by interferon-γ enzyme-linked immunospot at the highest dose post boost. Conclusions. An attenuated replication-competent rVSV gag vaccine has an acceptable safety profile in healthy adults. This rVSV vector is a promising new vaccine platform for the development of vaccines to combat HIV-1 and other serious human diseases.

17.
J Infect Dis ; 212 Suppl 2: S443-51, 2015 Oct 01.
Article in English | MEDLINE | ID: mdl-26109675

ABSTRACT

Previously, recombinant vesicular stomatitis virus (rVSV) pseudotypes expressing Ebolavirus glycoproteins (GPs) in place of the VSV G protein demonstrated protection of nonhuman primates from lethal homologous Ebolavirus challenge. Those pseudotype vectors contained no additional attenuating mutations in the rVSV genome. Here we describe rVSV vectors containing a full complement of VSV genes and expressing the Ebola virus (EBOV) GP from an additional transcription unit. These rVSV vectors contain the same combination of attenuating mutations used previously in the clinical development pathway of an rVSV/human immunodeficiency virus type 1 vaccine. One of these rVSV vectors (N4CT1-EBOVGP1), which expresses membrane-anchored EBOV GP from the first position in the genome (GP1), elicited a balanced cellular and humoral GP-specific immune response in mice. Guinea pigs immunized with a single dose of this vector were protected from any signs of disease following lethal EBOV challenge, while control animals died in 7-9 days. Subsequently, N4CT1-EBOVGP1 demonstrated complete, single-dose protection of 2 macaques following lethal EBOV challenge. A single sham-vaccinated macaque died from disease due to EBOV infection. These results demonstrate that highly attenuated rVSV vectors expressing EBOV GP may provide safer alternatives to current EBOV vaccines.


Subject(s)
Ebolavirus/immunology , Genetic Vectors/immunology , Hemorrhagic Fever, Ebola/immunology , Vaccines, Attenuated/immunology , Viral Vaccines/immunology , Animals , Antibodies, Viral/immunology , Female , Genetic Vectors/genetics , Glycoproteins/genetics , Glycoproteins/immunology , Guinea Pigs , Hemorrhagic Fever, Ebola/virology , Immunity, Cellular/immunology , Immunity, Humoral/immunology , Macaca mulatta , Male , Mice , Mice, Inbred BALB C , Vaccination/methods , Vesicular Stomatitis/immunology , Vesiculovirus/immunology , Viral Proteins/immunology
18.
Nature ; 520(7549): 688-691, 2015 Apr 30.
Article in English | MEDLINE | ID: mdl-25853476

ABSTRACT

The family Filoviridae contains three genera, Ebolavirus (EBOV), Marburg virus, and Cuevavirus. Some members of the EBOV genus, including Zaire ebolavirus (ZEBOV), can cause lethal haemorrhagic fever in humans. During 2014 an unprecedented ZEBOV outbreak occurred in West Africa and is still ongoing, resulting in over 10,000 deaths, and causing global concern of uncontrolled disease. To meet this challenge a rapid-acting vaccine is needed. Many vaccine approaches have shown promise in being able to protect nonhuman primates against ZEBOV. In response to the current ZEBOV outbreak several of these vaccines have been fast tracked for human use. However, it is not known whether any of these vaccines can provide protection against the new outbreak Makona strain of ZEBOV. One of these approaches is a first-generation recombinant vesicular stomatitis virus (rVSV)-based vaccine expressing the ZEBOV glycoprotein (GP) (rVSV/ZEBOV). To address safety concerns associated with this vector, we developed two candidate, further-attenuated rVSV/ZEBOV vaccines. Both attenuated vaccines produced an approximately tenfold lower vaccine-associated viraemia compared to the first-generation vaccine and both provided complete, single-dose protection of macaques from lethal challenge with the Makona outbreak strain of ZEBOV.


Subject(s)
Ebola Vaccines/administration & dosage , Ebola Vaccines/immunology , Ebolavirus/immunology , Hemorrhagic Fever, Ebola/prevention & control , Hemorrhagic Fever, Ebola/virology , Vaccines, Attenuated/immunology , Vesiculovirus/genetics , Africa, Western/epidemiology , Animals , Antibodies, Viral/immunology , Democratic Republic of the Congo/epidemiology , Ebola Vaccines/genetics , Ebolavirus/classification , Female , Genetic Vectors/genetics , Hemorrhagic Fever, Ebola/immunology , Humans , Immunoglobulin G/immunology , Kinetics , Macaca fascicularis , Male , Survival Analysis , Vaccination , Vaccines, Attenuated/administration & dosage , Vaccines, Attenuated/genetics , Vesiculovirus/growth & development
19.
Proc Natl Acad Sci U S A ; 112(9): E992-9, 2015 Mar 03.
Article in English | MEDLINE | ID: mdl-25681373

ABSTRACT

A guiding principle for HIV vaccine design has been that cellular and humoral immunity work together to provide the strongest degree of efficacy. However, three efficacy trials of Ad5-vectored HIV vaccines showed no protection. Transmission was increased in two of the trials, suggesting that this vaccine strategy elicited CD4+ T-cell responses that provide more targets for infection, attenuating protection or increasing transmission. The degree to which this problem extends to other HIV vaccine candidates is not known. Here, we show that a gp120-CD4 chimeric subunit protein vaccine (full-length single chain) elicits heterologous protection against simian-human immunodeficiency virus (SHIV) or simian immunodeficiency virus (SIV) acquisition in three independent rhesus macaque repeated low-dose rectal challenge studies with SHIV162P3 or SIVmac251. Protection against acquisition was observed with multiple formulations and challenges. In each study, protection correlated with antibody-dependent cellular cytotoxicity specific for CD4-induced epitopes, provided that the concurrent antivaccine T-cell responses were minimal. Protection was lost in instances when T-cell responses were high or when the requisite antibody titers had declined. Our studies suggest that balance between a protective antibody response and antigen-specific T-cell activation is the critical element to vaccine-mediated protection against HIV. Achieving and sustaining such a balance, while enhancing antibody durability, is the major challenge for HIV vaccine development, regardless of the immunogen or vaccine formulation.


Subject(s)
AIDS Vaccines/pharmacology , CD4-Positive T-Lymphocytes/immunology , HIV Antibodies/immunology , HIV Infections/prevention & control , Immunity, Cellular/drug effects , AIDS Vaccines/immunology , Animals , CD4 Antigens/genetics , CD4 Antigens/immunology , CD4 Antigens/pharmacology , CD4-Positive T-Lymphocytes/pathology , Disease Models, Animal , Female , HIV Envelope Protein gp120/genetics , HIV Envelope Protein gp120/immunology , HIV Envelope Protein gp120/pharmacology , HIV Infections/immunology , HIV Infections/pathology , Humans , Immunity, Humoral , Macaca mulatta , Male , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/pharmacology
20.
Vaccine ; 27(2): 243-9, 2009 Jan 07.
Article in English | MEDLINE | ID: mdl-18996425

ABSTRACT

There is an urgent need for a vaccine capable of preventing HIV infection or the development of HIV-related disease. A number of approaches designed to stimulate HIV-specific CD8+ cytotoxic T cell responses together with helper responses are presently under evaluation. In this phase 1, multi-center, placebo-controlled trial, we tested the ability of a novel multiepitope peptide vaccine to elicit HIV-specific immunity. To enhance the immunogenicity of the peptide vaccine, half of the vaccine recipients received recombinant granulocyte-macrophage colony stimulating factor (GM-CSF) protein as a coadjuvant. The vaccine was safe; tolerability was moderate, with a number of adverse events related to local injection site reactogenicity. Anti-GM-CSF antibody responses developed in the majority of GM-CSF recipients but were not associated with adverse hematologic events. The vaccine was only minimally immunogenic. Six of 80 volunteers who received vaccine developed HIV-specific responses as measured by interferon-gamma ELISPOT assay, and measurable responses were transient. This study failed to demonstrate that GM-CSF can substantially improve the overall weak immunogenicity of a multiepitope peptide-based HIV vaccine.


Subject(s)
AIDS Vaccines/adverse effects , AIDS Vaccines/immunology , Granulocyte-Macrophage Colony-Stimulating Factor , HIV Infections/prevention & control , HIV-1/immunology , T-Lymphocytes, Cytotoxic/immunology , Vaccines, Subunit , AIDS Vaccines/administration & dosage , Adjuvants, Immunologic , Adolescent , Adult , Amino Acid Sequence , Granulocyte-Macrophage Colony-Stimulating Factor/administration & dosage , Granulocyte-Macrophage Colony-Stimulating Factor/adverse effects , Granulocyte-Macrophage Colony-Stimulating Factor/immunology , HIV Infections/immunology , Humans , Interferon-gamma/biosynthesis , Lymphocyte Activation , Middle Aged , Molecular Sequence Data , Peptide Fragments/chemistry , Peptide Fragments/immunology , Recombinant Proteins , Treatment Outcome , Vaccines, Subunit/administration & dosage , Vaccines, Subunit/adverse effects , Vaccines, Subunit/immunology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...