Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Mol Biol Rep ; 50(8): 6739-6751, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37389701

ABSTRACT

INTRODUCTION: Common bean is one of the widely consumed food security crop in Africa, Asia, and South America. Understanding genetic diversity and population structure is crucial for designing breeding strategies. MATERIALS: Two hundred and eighty-nine germplasm were recently collected from different regions of Ethiopia and introduced from CIAT to estimate genetic diversity and population structure using 11,480 DArTSeq SNP markers. RESULTS: The overall mean genetic diversity and polymorphic information content (PIC) were 0.38 and 0.30, respectively, suggested the presence of adequate genetic diversity among the genotypes. Among the geographical regions, landraces collected from Oromia showed the highest diversity (0.39) and PIC (0.30). The highest genetic distance was observed between genotypes collected from SNNPR and CIAT (0.49). In addition, genotypes from CIAT were genetically more related to improved varieties than the landraces which could be due to sharing of parents in the improvement process. The analysis of molecular variance revealed that the largest proportion of variation was due to within the population both in geographical region (63.67%) and breeding status (61.3%) based classification. Model-based structure analysis delineated the 289 common bean genotypes into six hypothetical ancestoral populations. CONCLUSIONS: The genotypes were not clustered based on geographical regions and they were not the main drivers for the differentiation. This indicated that selection of the parental lines should be based on systematic assessment of the diversity rather than geographical distance. This article provides new insights into the genetic diversity and population structure of common bean for association studies, designing effective collection and conservation for efficient utilization for the improvement of the crop.


Subject(s)
Phaseolus , Phaseolus/genetics , Ethiopia , Plant Breeding , Genotype , Genetic Variation/genetics
2.
Plants (Basel) ; 13(1)2023 Dec 19.
Article in English | MEDLINE | ID: mdl-38202313

ABSTRACT

Around 300 different plant species are infected by the plant-parasitic reniform nematode (Rotylenchulus reniformis), including cotton. This is a devasting nematode with a preference for cotton; it is commonly found in Alabama farms and causes severe reduction in yields. Its first internal transcribed spacer (ITS1) region can be sequenced, and potential mutations can be found in order to study the population dynamics of the reniform nematode. The goal of our study was to sequence the ITS1 rDNA region in male and female RNs that were collected from BelleMina, Hamilton, and Lamons locations in Alabama. After separating the single male and female RNs from the samples collected from the three selected listed sites above, the ITS1 region was amplified selectively using specific primers, and the resulting products were cloned and sequenced. Two distinct bands were observed after DNA amplification of male and female nematodes at 550 bp and 730 bp, respectively. The analysis of sequenced fragments among the three populations showed variation in average nucleotide frequencies of female and male RNs. Singletons within the female and male Hamilton populations ranged from 7.8% to 10%, and the variable sites ranged from 13.4% to 26%. However, female and male BelleMina populations had singletons ranging from 7.1% to 19.7% and variable regions in the range of 13.9% to 49.3%. The female and male Lamons populations had singletons ranging from 2.5% to 8.7% and variable regions in the range of 2.9% to 14.2%. Phylogenetic (neighbor-joining) analysis for the two ITS1 fragments (ITS-550 and ITS-730) showed relatively high intra-nematode variability. Different clone sequences from an individual nematode often had greater similarity with other nematodes than with their own sequences. RNA fold analysis of the ITS1 sequences revealed varied stem and loop structures, suggesting both conserved and variable regions in the variants identified from female and male RNs, thus underscoring the presence of significant intra- and inter-nematodal variation among RN populations in Alabama.

3.
Sci Rep ; 9(1): 15443, 2019 10 28.
Article in English | MEDLINE | ID: mdl-31659221

ABSTRACT

In angiosperms, sex determination leads to development of unisexual flowers. In Cucumis melo, development of unisexual male flowers results from the expression of the sex determination gene, CmWIP1, in carpel primordia. To bring new insight on the molecular mechanisms through which CmWIP1 leads to carpel abortion in male flowers, we used the yeast two-hybrid approach to look for CmWIP1-interacting proteins. We found that CmWIP1 physically interacts with an S2 bZIP transcription factor, CmbZIP48. We further determined the region mediating the interaction and showed that it involves the N-terminal part of CmWIP1. Using laser capture microdissection coupled with quantitative real-time gene expression analysis, we demonstrated that CmWIP1 and CmbZIP48 share a similar spatiotemporal expression pattern, providing the plant organ context for the CmWIP1-CmbZIP48 protein interaction. Using sex transition mutants, we demonstrated that the expression of the male promoting gene CmWIP1 correlates with the expression of CmbZIP48. Altogether, our data support a model in which the coexpression and the physical interaction of CmWIP1 and CmbZIP48 trigger carpel primordia abortion, leading to the development of unisexual male flowers.


Subject(s)
Cucumis melo , Flowers , Gene Expression Regulation, Plant , Plant Proteins , Transcription Factors , Cucumis melo/genetics , Cucumis melo/metabolism , Flowers/genetics , Flowers/metabolism , Plant Proteins/biosynthesis , Plant Proteins/genetics , Transcription Factors/biosynthesis , Transcription Factors/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...