Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Cell Death Dis ; 13(2): 163, 2022 02 19.
Article in English | MEDLINE | ID: mdl-35184131

ABSTRACT

During this last decade, the development of prosenescence therapies has become an attractive strategy as cellular senescence acts as a barrier against tumour progression. In this context, CDK4/6 inhibitors induce senescence and reduce tumour growth in breast cancer patients. However, even though cancer cells are arrested after CDK4/6 inhibitor treatment, genes regulating senescence in this context are still unknown limiting their antitumour activity. Here, using a functional genome-wide CRISPR/Cas9 genetic screen we found several genes that participate in the proliferation arrest induced by CDK4/6 inhibitors. We find that downregulation of the coagulation factor IX (F9) using sgRNA and shRNA prevents the cell cycle arrest and senescent-like phenotype induced in MCF7 breast tumour cells upon Palbociclib treatment. These results were confirmed using another breast cancer cell line, T47D, and with an alternative CDK4/6 inhibitor, Abemaciclib, and further tested in a panel of 22 cancer cells. While F9 knockout prevents the induction of senescence, treatment with a recombinant F9 protein was sufficient to induce a cell cycle arrest and senescence-like state in MCF7 tumour cells. Besides, endogenous F9 is upregulated in different human primary cells cultures undergoing senescence. Importantly, bioinformatics analysis of cancer datasets suggest a role for F9 in human tumours. Altogether, these data collectively propose key genes involved in CDK4/6 inhibitor response that will be useful to design new therapeutic strategies in personalised medicine in order to increase their efficiency, stratify patients and avoid drug resistance.


Subject(s)
Breast Neoplasms , Cyclin-Dependent Kinase 6 , Factor IX , Breast Neoplasms/genetics , Breast Neoplasms/pathology , CRISPR-Cas Systems/genetics , Cell Line, Tumor , Cell Proliferation/genetics , Cellular Senescence/genetics , Cyclin-Dependent Kinase 4/antagonists & inhibitors , Cyclin-Dependent Kinase 4/metabolism , Cyclin-Dependent Kinase 6/antagonists & inhibitors , Cyclin-Dependent Kinase 6/metabolism , Factor IX/genetics , Female , Humans , MCF-7 Cells
2.
Cell Rep ; 27(13): 3956-3971.e6, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31242426

ABSTRACT

Senescence is a cellular phenotype present in health and disease, characterized by a stable cell-cycle arrest and an inflammatory response called senescence-associated secretory phenotype (SASP). The SASP is important in influencing the behavior of neighboring cells and altering the microenvironment; yet, this role has been mainly attributed to soluble factors. Here, we show that both the soluble factors and small extracellular vesicles (sEVs) are capable of transmitting paracrine senescence to nearby cells. Analysis of individual cells internalizing sEVs, using a Cre-reporter system, show a positive correlation between sEV uptake and senescence activation. We find an increase in the number of multivesicular bodies during senescence in vivo. sEV protein characterization by mass spectrometry (MS) followed by a functional siRNA screen identify interferon-induced transmembrane protein 3 (IFITM3) as being partially responsible for transmitting senescence to normal cells. We find that sEVs contribute to paracrine senescence.


Subject(s)
Cellular Microenvironment , Extracellular Vesicles/metabolism , Membrane Proteins/metabolism , Paracrine Communication , RNA-Binding Proteins/metabolism , Female , HEK293 Cells , Humans , MCF-7 Cells , Male
3.
Basic Res Cardiol ; 112(4): 37, 2017 07.
Article in English | MEDLINE | ID: mdl-28526910

ABSTRACT

Cardiac physiology and hypertrophy are regulated by the phosphorylation status of many proteins, which is partly controlled by a poorly defined type 2A protein phosphatase-alpha4 intracellular signalling axis. Quantitative PCR analysis revealed that mRNA levels of the type 2A catalytic subunits were differentially expressed in H9c2 cardiomyocytes (PP2ACß > PP2ACα > PP4C > PP6C), NRVM (PP2ACß > PP2ACα = PP4C = PP6C), and adult rat ventricular myocytes (PP2ACα > PP2ACß > PP6C > PP4C). Western analysis confirmed that all type 2A catalytic subunits were expressed in H9c2 cardiomyocytes; however, PP4C protein was absent in adult myocytes and only detectable following 26S proteasome inhibition. Short-term knockdown of alpha4 protein expression attenuated expression of all type 2A catalytic subunits. Pressure overload-induced left ventricular (LV) hypertrophy was associated with an increase in both PP2AC and alpha4 protein expression. Although PP6C expression was unchanged, expression of PP6C regulatory subunits (1) Sit4-associated protein 1 (SAP1) and (2) ankyrin repeat domain (ANKRD) 28 and 44 proteins was elevated, whereas SAP2 expression was reduced in hypertrophied LV tissue. Co-immunoprecipitation studies demonstrated that the interaction between alpha4 and PP2AC or PP6C subunits was either unchanged or reduced in hypertrophied LV tissue, respectively. Phosphorylation status of phospholemman (Ser63 and Ser68) was significantly increased by knockdown of PP2ACα, PP2ACß, or PP4C protein expression. DNA damage assessed by histone H2A.X phosphorylation (γH2A.X) in hypertrophied tissue remained unchanged. However, exposure of cardiomyocytes to H2O2 increased levels of γH2A.X which was unaffected by knockdown of PP6C expression, but was abolished by the short-term knockdown of alpha4 expression. This study illustrates the significance and altered activity of the type 2A protein phosphatase-alpha4 complex in healthy and hypertrophied myocardium.


Subject(s)
Hypertrophy, Left Ventricular/enzymology , Myocytes, Cardiac/enzymology , Phosphoproteins/metabolism , Protein Phosphatase 2/metabolism , Signal Transduction , Adaptor Proteins, Signal Transducing , Animals , Animals, Newborn , Cell Line , DNA Damage , Gene Expression Regulation, Enzymologic , Histones/metabolism , Hypertrophy, Left Ventricular/genetics , Hypertrophy, Left Ventricular/pathology , Intercellular Signaling Peptides and Proteins , Membrane Proteins/metabolism , Mice, Inbred C57BL , Molecular Chaperones , Myocytes, Cardiac/pathology , Oxidative Stress , Phosphoprotein Phosphatases/genetics , Phosphoprotein Phosphatases/metabolism , Phosphoproteins/genetics , Phosphorylation , Proteasome Endopeptidase Complex/metabolism , Protein Phosphatase 2/genetics , RNA Interference , Rats, Sprague-Dawley , Rats, Wistar , Transfection
4.
Br J Pharmacol ; 174(14): 2209-2224, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28380256

ABSTRACT

BACKGROUND AND PURPOSE: With the emergence of extensively drug-resistant tuberculosis, there is a need for new anti-tubercular drugs that work through novel mechanisms of action. The meta cleavage product hydrolase, HsaD, has been demonstrated to be critical for the survival of Mycobacterium tuberculosis in macrophages and is encoded in an operon involved in cholesterol catabolism, which is identical in M. tuberculosis and M. bovis BCG. EXPERIMENTAL APPROACH: We generated a mutant strain of M. bovis BCG with a deletion of hsaD and tested its growth on cholesterol. Using a fragment based approach, over 1000 compounds were screened by a combination of differential scanning fluorimetry, NMR spectroscopy and enzymatic assay with pure recombinant HsaD to identify potential inhibitors. We used enzymological and structural studies to investigate derivatives of the inhibitors identified and to test their effects on growth of M. bovis BCG and M. tuberculosis. KEY RESULTS: The hsaD deleted strain was unable to grow on cholesterol as sole carbon source but did grow on glucose. Of seven chemically distinct 'hits' from the library, two chemical classes of fragments were found to bind in the vicinity of the active site of HsaD by X-ray crystallography. The compounds also inhibited growth of M. tuberculosis on cholesterol. The most potent inhibitor of HsaD was also found to be the best inhibitor of mycobacterial growth on cholesterol-supplemented minimal medium. CONCLUSIONS AND IMPLICATIONS: We propose that HsaD is a novel therapeutic target, which should be fully exploited in order to design and discover new anti-tubercular drugs. LINKED ARTICLES: This article is part of a themed section on Drug Metabolism and Antibiotic Resistance in Micro-organisms. To view the other articles in this section visit http://onlinelibrary.wiley.com/doi/10.1111/bph.v174.14/issuetoc.


Subject(s)
Antitubercular Agents/pharmacology , Drug Design , Enzyme Inhibitors/pharmacology , Hydrolases/antagonists & inhibitors , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/enzymology , Antitubercular Agents/chemical synthesis , Antitubercular Agents/chemistry , Crystallography, X-Ray , Dose-Response Relationship, Drug , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/chemistry , Hydrolases/deficiency , Hydrolases/metabolism , Microbial Sensitivity Tests , Models, Molecular , Molecular Structure , Mycobacterium tuberculosis/growth & development , Mycobacterium tuberculosis/metabolism , Structure-Activity Relationship
5.
FEMS Microbiol Lett ; 350(1): 42-7, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24164668

ABSTRACT

Mycobacterium tuberculosis remains the leading cause of death by a bacterial pathogen worldwide. Increasing prevalence of multidrug-resistant organisms means prioritizing identification of targets for antituberculars. 2-hydroxy-6-oxo-6-phenylhexa-2,4-dienoate hydrolase (HsaD), part of the cholesterol metabolism operon, is vital for survival within macrophage. The C-C bond hydrolase, HsaD, has a serine protease-like catalytic triad. We tested a range of serine protease and esterase inhibitors for their effects on HsaD activity. As well as providing a potential starting point for drug development, the data provides evidence for the mechanism of C-C bond hydrolysis. This screen also provides a route to initiate development of fragment-based inhibitors.


Subject(s)
Antitubercular Agents/pharmacology , Cholinesterase Inhibitors/pharmacology , Fatty Acids, Unsaturated/metabolism , Hydrolases/antagonists & inhibitors , Mycobacterium tuberculosis/enzymology , Serine Proteinase Inhibitors/pharmacology , Antitubercular Agents/chemistry , Cholinesterase Inhibitors/chemistry , Drug Design , Hydrolases/isolation & purification , Hydrolases/metabolism , Hydrolysis , Inhibitory Concentration 50 , Macrophages/microbiology , Microbial Viability , Models, Molecular , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Protein Conformation , Pseudomonas/genetics , Pseudomonas/metabolism , Serine Proteinase Inhibitors/chemistry , Spectrometry, Mass, Electrospray Ionization
6.
FEBS Lett ; 586(6): 675-9, 2012 Mar 23.
Article in English | MEDLINE | ID: mdl-22449962

ABSTRACT

MbeA and MbeC are two key proteins in plasmid ColE1 conjugal mobilization. Isothermal titration calorimetry was used to detect and quantify an interaction between MbeA and MbeC. As a result of this interaction, the affinity of MbeA for single stranded DNA increased. The interaction was confirmed in vivo using a bacterial two-hybrid system, which revealed that MbeA-MbeC complexes are formed through the amino-terminal region of MbeA and the carboxy-terminal region of MbeC. To the best of our knowledge, this is the first report of direct interactions between conjugative proteins encoded by a mobilizable plasmid.


Subject(s)
Bacterial Proteins/metabolism , Endodeoxyribonucleases/metabolism , Plasmids/metabolism , Bacterial Proteins/genetics , Base Sequence , Conjugation, Genetic , DNA, Single-Stranded/metabolism , Endodeoxyribonucleases/genetics , Escherichia coli/genetics , Escherichia coli/metabolism , Molecular Sequence Data , Plasmids/genetics , Two-Hybrid System Techniques
SELECTION OF CITATIONS
SEARCH DETAIL
...