Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Mol Psychiatry ; 29(4): 1205-1215, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38418578

ABSTRACT

The ionotropic glutamate delta receptor GluD1, encoded by the GRID1 gene, is involved in synapse formation, function, and plasticity. GluD1 does not bind glutamate, but instead cerebellin and D-serine, which allow the formation of trans-synaptic bridges, and trigger transmembrane signaling. Despite wide expression in the nervous system, pathogenic GRID1 variants have not been characterized in humans so far. We report homozygous missense GRID1 variants in five individuals from two unrelated consanguineous families presenting with intellectual disability and spastic paraplegia, without (p.Thr752Met) or with (p.Arg161His) diagnosis of glaucoma, a threefold phenotypic association whose genetic bases had not been elucidated previously. Molecular modeling and electrophysiological recordings indicated that Arg161His and Thr752Met mutations alter the hinge between GluD1 cerebellin and D-serine binding domains and the function of this latter domain, respectively. Expression, trafficking, physical interaction with metabotropic glutamate receptor mGlu1, and cerebellin binding of GluD1 mutants were not conspicuously altered. Conversely, upon expression in neurons of dissociated or organotypic slice cultures, we found that both GluD1 mutants hampered metabotropic glutamate receptor mGlu1/5 signaling via Ca2+ and the ERK pathway and impaired dendrite morphology and excitatory synapse density. These results show that the clinical phenotypes are distinct entities segregating in the families as an autosomal recessive trait, and caused by pathophysiological effects of GluD1 mutants involving metabotropic glutamate receptor signaling and neuronal connectivity. Our findings unravel the importance of GluD1 receptor signaling in sensory, cognitive and motor functions of the human nervous system.


Subject(s)
Intellectual Disability , Receptors, Metabotropic Glutamate , Signal Transduction , Synapses , Humans , Intellectual Disability/genetics , Male , Synapses/metabolism , Synapses/genetics , Female , Receptors, Metabotropic Glutamate/genetics , Receptors, Metabotropic Glutamate/metabolism , Signal Transduction/genetics , Homozygote , Receptors, Glutamate/genetics , Receptors, Glutamate/metabolism , Receptor, Metabotropic Glutamate 5/metabolism , Receptor, Metabotropic Glutamate 5/genetics , Pedigree , Adult , Paraplegia/genetics , Paraplegia/metabolism , Animals , Child , Neurons/metabolism , Adolescent , HEK293 Cells , Mutation/genetics
2.
Methods Mol Biol ; 2305: 83-104, 2021.
Article in English | MEDLINE | ID: mdl-33950385

ABSTRACT

Mammalian protein expression systems are ideally suited for the high-level production of recombinant eukaryotic secreted and membrane proteins for structural biology applications. Here, we present genetic transduction of HEK293-derived cells using lentivirus as a robust and cost-efficient method for the rapid generation of stable expression cell lines. We describe the features of the lentiviral transfer plasmid pHR-CMV-TetO2, as well as detailed protocols for production of lentiviral particles, determination of functional lentiviral titer, infection of expression cells, culture and expansion of the resulting stable cell lines, their adaptation to adherent and suspension growth, and constitutive or inducible milligram-scale protein production. The typical lead-time for a full production run is ~3-4 weeks, with an anticipated yield of up to tens of milligrams of protein per liter of expression medium.


Subject(s)
Biotechnology/methods , Cell Culture Techniques/methods , Lentivirus/metabolism , Recombinant Proteins/biosynthesis , Animals , Cell Line , Genetic Vectors , HEK293 Cells , Humans , Lentivirus/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Plasmids/genetics , Recombinant Proteins/genetics , Transduction, Genetic/methods , Transfection/methods
3.
Cell ; 184(8): 2103-2120.e31, 2021 04 15.
Article in English | MEDLINE | ID: mdl-33740419

ABSTRACT

During cell migration or differentiation, cell surface receptors are simultaneously exposed to different ligands. However, it is often unclear how these extracellular signals are integrated. Neogenin (NEO1) acts as an attractive guidance receptor when the Netrin-1 (NET1) ligand binds, but it mediates repulsion via repulsive guidance molecule (RGM) ligands. Here, we show that signal integration occurs through the formation of a ternary NEO1-NET1-RGM complex, which triggers reciprocal silencing of downstream signaling. Our NEO1-NET1-RGM structures reveal a "trimer-of-trimers" super-assembly, which exists in the cell membrane. Super-assembly formation results in inhibition of RGMA-NEO1-mediated growth cone collapse and RGMA- or NET1-NEO1-mediated neuron migration, by preventing formation of signaling-compatible RGM-NEO1 complexes and NET1-induced NEO1 ectodomain clustering. These results illustrate how simultaneous binding of ligands with opposing functions, to a single receptor, does not lead to competition for binding, but to formation of a super-complex that diminishes their functional outputs.


Subject(s)
Cell Adhesion Molecules, Neuronal/metabolism , GPI-Linked Proteins/metabolism , Nerve Tissue Proteins/metabolism , Oncogene Proteins/metabolism , Animals , Cell Adhesion Molecules, Neuronal/chemistry , Cell Movement , DCC Receptor/deficiency , DCC Receptor/genetics , GPI-Linked Proteins/chemistry , Growth Cones/physiology , Humans , Lateral Ventricles/cytology , Mice , Mice, Inbred C57BL , Mice, Knockout , Nerve Tissue Proteins/antagonists & inhibitors , Nerve Tissue Proteins/chemistry , Neurons/cytology , Neurons/metabolism , Oncogene Proteins/chemistry , Oncogene Proteins/genetics , Protein Binding , Protein Multimerization , Protein Structure, Quaternary , RNA Interference , RNA, Small Interfering/metabolism , Signal Transduction
5.
Science ; 369(6507)2020 08 28.
Article in English | MEDLINE | ID: mdl-32855309

ABSTRACT

Neuronal synapses undergo structural and functional changes throughout life, which are essential for nervous system physiology. However, these changes may also perturb the excitatory-inhibitory neurotransmission balance and trigger neuropsychiatric and neurological disorders. Molecular tools to restore this balance are highly desirable. Here, we designed and characterized CPTX, a synthetic synaptic organizer combining structural elements from cerebellin-1 and neuronal pentraxin-1. CPTX can interact with presynaptic neurexins and postsynaptic AMPA-type ionotropic glutamate receptors and induced the formation of excitatory synapses both in vitro and in vivo. CPTX restored synaptic functions, motor coordination, spatial and contextual memories, and locomotion in mouse models for cerebellar ataxia, Alzheimer's disease, and spinal cord injury, respectively. Thus, CPTX represents a prototype for structure-guided biologics that can efficiently repair or remodel neuronal circuits.


Subject(s)
C-Reactive Protein/pharmacology , Nerve Tissue Proteins/pharmacology , Neural Pathways/drug effects , Protein Precursors/pharmacology , Receptors, AMPA/metabolism , Recombinant Proteins/pharmacology , Synapses/drug effects , Alzheimer Disease/therapy , Animals , C-Reactive Protein/chemistry , C-Reactive Protein/therapeutic use , Cerebellar Ataxia/therapy , Disease Models, Animal , HEK293 Cells , Hippocampus , Humans , Mice , Mice, Inbred C57BL , Mice, Mutant Strains , Nerve Tissue Proteins/chemistry , Nerve Tissue Proteins/therapeutic use , Protein Domains , Protein Precursors/chemistry , Protein Precursors/therapeutic use , Receptors, Glutamate/genetics , Recombinant Proteins/chemistry , Recombinant Proteins/therapeutic use , Spine/drug effects , Spine/physiology
7.
Curr Opin Neurobiol ; 57: 71-80, 2019 08.
Article in English | MEDLINE | ID: mdl-30771697

ABSTRACT

Synapse development depends on a dynamic balance between synapse promoters and suppressors. MDGAs, immunoglobulin superfamily proteins, negatively regulate synapse development through blocking neuroligin-neurexin interactions. Recent analyses of MDGA-neuroligin complexes revealed the structural basis of this activity and indicate that MDGAs interact with all neuroligins with differential affinities. Surprisingly, analyses of mouse mutants revealed a functional divergence, with targeted mutation of Mdga1 and Mdga2 elevating inhibitory and excitatory synapses, respectively, on hippocampal pyramidal neurons. Further research is needed to determine the synapse-specific organizing properties of MDGAs in neural circuits, which may depend on relative levels and subcellular distributions of each MDGA, neuroligin and neurexin. Behavioral deficits in Mdga mutant mice support genetic links to schizophrenia and autism spectrum disorders and raise the possibility of harnessing these interactions for therapeutic purposes.


Subject(s)
Synapses , Animals , Cell Adhesion Molecules, Neuronal , Dansyl Compounds , Galactosamine/analogs & derivatives , Mice , Nerve Tissue Proteins
8.
Nat Protoc ; 13(12): 2991-3017, 2018 12.
Article in English | MEDLINE | ID: mdl-30455477

ABSTRACT

Structural, biochemical and biophysical studies of eukaryotic soluble and membrane proteins require their production in milligram quantities. Although large-scale protein expression strategies based on transient or stable transfection of mammalian cells are well established, they are associated with high consumable costs, limited transfection efficiency or long and tedious selection of clonal cell lines. Lentiviral transduction is an efficient method for the delivery of transgenes to mammalian cells and unifies the ease of use and speed of transient transfection with the robust expression of stable cell lines. In this protocol, we describe the design and step-by-step application of a lentiviral plasmid suite, termed pHR-CMV-TetO2, for the constitutive or inducible large-scale production of soluble and membrane proteins in HEK293 cell lines. Optional features include bicistronic co-expression of fluorescent marker proteins for enrichment of co-transduced cells using cell sorting and of biotin ligase for in vivo biotinylation. We demonstrate the efficacy of the method for a set of soluble proteins and for the G-protein-coupled receptor (GPCR) Smoothened (SMO). We further compare this method with baculovirus transduction of mammalian cells (BacMam), using the type-A γ-aminobutyric acid receptor (GABAAR) ß3 homopentamer as a test case. The protocols described here are optimized for simplicity, speed and affordability; lead to a stable polyclonal cell line and milligram-scale amounts of protein in 3-4 weeks; and routinely achieve an approximately three- to tenfold improvement in protein production yield per cell as compared to transient transduction or transfection.


Subject(s)
Lentivirus/genetics , Membrane Proteins/genetics , Plasmids/genetics , Transduction, Genetic/methods , Biotechnology/economics , Biotechnology/methods , Gene Expression , HEK293 Cells , Humans , Time Factors , Transduction, Genetic/economics
9.
J Vis Exp ; (137)2018 07 17.
Article in English | MEDLINE | ID: mdl-30080195

ABSTRACT

Number and brightness is a calibration-free fluorescence fluctuation spectroscopy (FFS) technique for detecting protein homo-oligomerization. It can be employed using a conventional confocal microscope equipped with digital detectors. A protocol for the use of the technique in vitro is shown by means of a use case where number and brightness can be seen to accurately quantify the oligomeric state of mVenus-labelled FKBP12F36V before and after the addition of the dimerizing drug AP20187. The importance of using the correct microscope acquisition parameters and the correct data preprocessing and analysis methods are discussed. In particular, the importance of the choice of photobleaching correction is stressed. This inexpensive method can be employed to study protein-protein interactions in many biological contexts.


Subject(s)
Calibration/standards , Software/standards , Spectrometry, Fluorescence/methods
10.
Bioinformatics ; 33(21): 3508-3510, 2017 Nov 01.
Article in English | MEDLINE | ID: mdl-29036562

ABSTRACT

SUMMARY: An R package for performing number and brightness image analysis, with the implementation of a novel automatic detrending algorithm. AVAILABILITY AND IMPLEMENTATION: Available at https://github.com/rorynolan/nandb for all platforms. CONTACT: rnolan@well.ox.ac.uk or spadilla@well.ox.ac.uk. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Algorithms , Image Processing, Computer-Assisted/methods , Software , Animals , COS Cells , Chlorocebus aethiops , Humans
11.
FEBS Lett ; 591(20): 3391-3401, 2017 10.
Article in English | MEDLINE | ID: mdl-28869767

ABSTRACT

Shewanella oneidensis, a Gram-negative γ-proteobacterium with an extensive redox capacity, possesses four old yellow enzyme (OYE) homologs. Of these, Shewanella yellow enzyme 4 (SYE4) is implicated in resistance to oxidative stress. Here, we present a series of high-resolution crystal structures for SYE4 in the oxidized and reduced states, and in complex with phenolic ligands and the nitro-aromatic explosive picric acid. The structures unmask new features, including the identification of a binding platform for long-chain hydrophobic molecules. Furthermore, we present the first structural observation of a hydride-Meisenheimer complex of picric acid with a flavoenzyme. Overall, our study exposes the binding promiscuity of SYE4 toward a variety of electrophilic substrates and is consistent with a general detoxification function for SYE4.


Subject(s)
Anisoles/chemistry , Bacterial Proteins/chemistry , Benzaldehydes/chemistry , Cresols/chemistry , NADPH Dehydrogenase/chemistry , Shewanella/chemistry , Amino Acid Motifs , Anisoles/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Benzaldehydes/metabolism , Binding Sites , Cloning, Molecular , Cresols/metabolism , Crystallography, X-Ray , Escherichia coli/genetics , Escherichia coli/metabolism , Gene Expression , Hydrophobic and Hydrophilic Interactions , Isoenzymes/chemistry , Isoenzymes/genetics , Isoenzymes/metabolism , Kinetics , Ligands , Models, Molecular , NADPH Dehydrogenase/genetics , NADPH Dehydrogenase/metabolism , Oxidation-Reduction , Oxidative Stress , Picrates/chemistry , Picrates/metabolism , Protein Binding , Protein Interaction Domains and Motifs , Protein Structure, Secondary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Shewanella/enzymology , Substrate Specificity
13.
Neuron ; 95(4): 896-913.e10, 2017 Aug 16.
Article in English | MEDLINE | ID: mdl-28817804

ABSTRACT

Neuroligin-neurexin (NL-NRX) complexes are fundamental synaptic organizers in the central nervous system. An accurate spatial and temporal control of NL-NRX signaling is crucial to balance excitatory and inhibitory neurotransmission, and perturbations are linked with neurodevelopmental and psychiatric disorders. MDGA proteins bind NLs and control their function and interaction with NRXs via unknown mechanisms. Here, we report crystal structures of MDGA1, the NL1-MDGA1 complex, and a spliced NL1 isoform. Two large, multi-domain MDGA molecules fold into rigid triangular structures, cradling a dimeric NL to prevent NRX binding. Structural analyses guided the discovery of a broad, splicing-modulated interaction network between MDGA and NL family members and helped rationalize the impact of autism-linked mutations. We demonstrate that expression levels largely determine whether MDGAs act selectively or suppress the synapse organizing function of multiple NLs. These results illustrate a potentially brain-wide regulatory mechanism for NL-NRX signaling modulation.


Subject(s)
Dansyl Compounds/metabolism , Galactosamine/analogs & derivatives , Neurturin/metabolism , Signal Transduction/physiology , Synapses/physiology , Animals , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/genetics , Basic Helix-Loop-Helix Leucine Zipper Transcription Factors/metabolism , COS Cells , Calcium-Binding Proteins/genetics , Calcium-Binding Proteins/metabolism , Cell Adhesion Molecules, Neuronal/genetics , Cell Adhesion Molecules, Neuronal/metabolism , Chickens , Coculture Techniques , Extracellular Matrix Proteins/genetics , Extracellular Matrix Proteins/metabolism , Galactosamine/genetics , Galactosamine/metabolism , HEK293 Cells , Humans , Membrane Proteins/genetics , Membrane Proteins/metabolism , Mice , Models, Molecular , Mutagenesis, Site-Directed , Mutation/genetics , Nerve Tissue Proteins/metabolism , Neurturin/genetics , Protein Interaction Maps , Receptors, N-Methyl-D-Aspartate/metabolism , Sequence Alignment
14.
Science ; 353(6296): 295-9, 2016 Jul 15.
Article in English | MEDLINE | ID: mdl-27418511

ABSTRACT

Ionotropic glutamate receptor (iGluR) family members are integrated into supramolecular complexes that modulate their location and function at excitatory synapses. However, a lack of structural information beyond isolated receptors or fragments thereof currently limits the mechanistic understanding of physiological iGluR signaling. Here, we report structural and functional analyses of the prototypical molecular bridge linking postsynaptic iGluR δ2 (GluD2) and presynaptic ß-neurexin 1 (ß-NRX1) via Cbln1, a C1q-like synaptic organizer. We show how Cbln1 hexamers "anchor" GluD2 amino-terminal domain dimers to monomeric ß-NRX1. This arrangement promotes synaptogenesis and is essential for D: -serine-dependent GluD2 signaling in vivo, which underlies long-term depression of cerebellar parallel fiber-Purkinje cell (PF-PC) synapses and motor coordination in developing mice. These results lead to a model where protein and small-molecule ligands synergistically control synaptic iGluR function.


Subject(s)
Long-Term Synaptic Depression , Nerve Tissue Proteins/chemistry , Neurogenesis , Protein Precursors/chemistry , Receptors, Glutamate/chemistry , Synapses/physiology , Animals , Ligands , Mice , Nerve Tissue Proteins/metabolism , Protein Multimerization , Protein Precursors/metabolism , Protein Structure, Tertiary , Purkinje Cells/metabolism , Purkinje Cells/physiology , Receptors, Glutamate/metabolism , Signal Transduction , Synapses/metabolism
15.
Structure ; 23(9): 1621-1631, 2015 Sep 01.
Article in English | MEDLINE | ID: mdl-26235028

ABSTRACT

Human colony-stimulating factor 1 receptor (hCSF-1R) is unique among the hematopoietic receptors because it is activated by two distinct cytokines, CSF-1 and interleukin-34 (IL-34). Despite ever-growing insights into the central role of hCSF-1R signaling in innate and adaptive immunity, inflammatory diseases, and cancer, the structural basis of the functional dichotomy of hCSF-1R has remained elusive. Here, we report crystal structures of ternary complexes between hCSF-1 and hCSF-1R, including their complete extracellular assembly, and propose a mechanism for the cooperative human CSF-1:CSF-1R complex that relies on the adoption by dimeric hCSF-1 of an active conformational state and homotypic receptor interactions. Furthermore, we trace the cytokine-binding duality of hCSF-1R to a limited set of conserved interactions mediated by functionally equivalent residues on CSF-1 and IL-34 that play into the geometric requirements of hCSF-1R activation, and map the possible mechanistic consequences of somatic mutations in hCSF-1R associated with cancer.


Subject(s)
Crystallography, X-Ray , Macrophage Colony-Stimulating Factor/chemistry , Macrophage Colony-Stimulating Factor/metabolism , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Receptor, Macrophage Colony-Stimulating Factor/metabolism , Binding Sites , Enzyme Activation , Humans , Models, Molecular , Phosphorylation , Scattering, Small Angle , Signal Transduction , X-Ray Diffraction
16.
Elife ; 42015 Jul 09.
Article in English | MEDLINE | ID: mdl-26158506

ABSTRACT

Wnt signalling regulates multiple processes including angiogenesis, inflammation, and tumorigenesis. Norrin (Norrie Disease Protein) is a cystine-knot like growth factor. Although unrelated to Wnt, Norrin activates the Wnt/ß-catenin pathway. Signal complex formation involves Frizzled4 (Fz4), low-density lipoprotein receptor related protein 5/6 (Lrp5/6), Tetraspanin-12 and glycosaminoglycans (GAGs). Here, we report crystallographic and small-angle X-ray scattering analyses of Norrin in complex with Fz4 cysteine-rich domain (Fz4CRD), of this complex bound with GAG analogues, and of unliganded Norrin and Fz4CRD. Our structural, biophysical and cellular data, map Fz4 and putative Lrp5/6 binding sites to distinct patches on Norrin, and reveal a GAG binding site spanning Norrin and Fz4CRD. These results explain numerous disease-associated mutations. Comparison with the Xenopus Wnt8-mouse Fz8CRD complex reveals Norrin mimics Wnt for Frizzled recognition. The production and characterization of wild-type and mutant Norrins reported here open new avenues for the development of therapeutics to combat abnormal Norrin/Wnt signalling.


Subject(s)
Eye Proteins/chemistry , Frizzled Receptors/chemistry , Nerve Tissue Proteins/chemistry , Proteoglycans/chemistry , Binding Sites , Crystallography, X-Ray , Eye Proteins/genetics , Eye Proteins/metabolism , Frizzled Receptors/metabolism , Humans , Low Density Lipoprotein Receptor-Related Protein-5/metabolism , Low Density Lipoprotein Receptor-Related Protein-6/metabolism , Mutant Proteins/chemistry , Mutant Proteins/genetics , Mutant Proteins/metabolism , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Protein Conformation , Proteoglycans/metabolism , Scattering, Small Angle
17.
Nat Struct Mol Biol ; 22(6): 458-65, 2015 Jun.
Article in English | MEDLINE | ID: mdl-25938661

ABSTRACT

Repulsive guidance molecules (RGMs) control crucial processes including cell motility, adhesion, immune-cell regulation and systemic iron metabolism. RGMs signal via the neogenin (NEO1) and the bone morphogenetic protein (BMP) pathways. Here, we report crystal structures of the N-terminal domains of all human RGM family members in complex with the BMP ligand BMP2, revealing a new protein fold and a conserved BMP-binding mode. Our structural and functional data suggest a pH-linked mechanism for RGM-activated BMP signaling and offer a rationale for RGM mutations causing juvenile hemochromatosis. We also determined the crystal structure of the ternary BMP2-RGM-NEO1 complex, which, along with solution scattering and live-cell super-resolution fluorescence microscopy, indicates BMP-induced clustering of the RGM-NEO1 complex. Our results show how RGM acts as the central hub that links BMP and NEO1 and physically connects these fundamental signaling pathways.


Subject(s)
Bone Morphogenetic Protein 2/chemistry , Cell Adhesion Molecules, Neuronal/chemistry , Membrane Proteins/chemistry , Protein Multimerization , Bone Morphogenetic Protein 2/metabolism , Cell Adhesion Molecules, Neuronal/metabolism , Crystallography, X-Ray , Humans , Membrane Proteins/metabolism , Models, Molecular , Protein Binding , Protein Conformation
18.
Nat Commun ; 5: 5209, 2014 Nov 11.
Article in English | MEDLINE | ID: mdl-25385546

ABSTRACT

Receptor protein tyrosine phosphatase sigma (RPTPσ) regulates neuronal extension and acts as a presynaptic nexus for multiple protein and proteoglycan interactions during synaptogenesis. Unknown mechanisms govern the shift in RPTPσ function, from outgrowth promotion to synaptic organization. Here, we report crystallographic, electron microscopic and small-angle X-ray scattering analyses, which reveal sufficient inter-domain flexibility in the RPTPσ extracellular region for interaction with both cis (same cell) and trans (opposite cell) ligands. Crystal structures of RPTPσ bound to its postsynaptic ligand TrkC detail an interaction surface partially overlapping the glycosaminoglycan-binding site. Accordingly, heparan sulphate and heparin oligomers compete with TrkC for RPTPσ binding in vitro and disrupt TrkC-dependent synaptic differentiation in neuronal co-culture assays. We propose that transient RPTPσ ectodomain emergence from the presynaptic proteoglycan layer allows capture by TrkC to form a trans-synaptic complex, the consequent reduction in RPTPσ flexibility potentiating interactions with additional ligands to orchestrate excitatory synapse formation.


Subject(s)
Extracellular Matrix Proteins/physiology , Neurogenesis/physiology , Receptor-Like Protein Tyrosine Phosphatases, Class 2/chemistry , Receptor-Like Protein Tyrosine Phosphatases, Class 2/physiology , Synapses/physiology , Animals , Cell Differentiation/physiology , Chick Embryo , Coculture Techniques , Crystallization , Extracellular Matrix Proteins/chemistry , Humans , Ligands , Mice , Neurons/cytology , Neurons/physiology , Protein Binding , Protein Structure, Tertiary , Proteoglycans/chemistry , Proteoglycans/physiology , Receptor, trkC/chemistry , Receptor, trkC/physiology , Signal Transduction/physiology
19.
Nucleic Acids Res ; 42(15): 10134-47, 2014 Sep.
Article in English | MEDLINE | ID: mdl-25056321

ABSTRACT

Nearly all bacteria exhibit a type of phenotypic growth described as persistence that is thought to underlie antibiotic tolerance and recalcitrant chronic infections. The chromosomally encoded high-persistence (Hip) toxin-antitoxin proteins HipASO and HipBSO from Shewanella oneidensis, a proteobacterium with unusual respiratory capacities, constitute a type II toxin-antitoxin protein module. Here we show that phosphorylated HipASO can engage in an unexpected ternary complex with HipBSO and double-stranded operator DNA that is distinct from the prototypical counterpart complex from Escherichia coli. The structure of HipBSO in complex with operator DNA reveals a flexible C-terminus that is sequestered by HipASO in the ternary complex, indicative of its role in binding HipASO to abolish its function in persistence. The structure of HipASO in complex with a non-hydrolyzable ATP analogue shows that HipASO autophosphorylation is coupled to an unusual conformational change of its phosphorylation loop. However, HipASO is unable to phosphorylate the translation factor Elongation factor Tu, contrary to previous reports, but in agreement with more recent findings. Our studies suggest that the phosphorylation state of HipA is an important factor in persistence and that the structural and mechanistic diversity of HipAB modules as regulatory factors in bacterial persistence is broader than previously thought.


Subject(s)
Bacterial Proteins/chemistry , Bacterial Toxins/chemistry , DNA, Bacterial/chemistry , Operator Regions, Genetic , Shewanella/genetics , Bacterial Proteins/metabolism , Bacterial Toxins/metabolism , DNA, Bacterial/metabolism , Models, Molecular , Peptide Elongation Factor Tu/metabolism , Phosphorylation , Protein Binding , Protein Conformation
20.
Structure ; 21(4): 528-39, 2013 Apr 02.
Article in English | MEDLINE | ID: mdl-23478061

ABSTRACT

The discovery that hematopoietic human colony stimulating factor-1 receptor (CSF-1R) can be activated by two distinct cognate cytokines, colony stimulating factor-1 (CSF-1) and interleukin-34 (IL-34), created puzzling scenarios for the two possible signaling complexes. We here employ a hybrid structural approach based on small-angle X-ray scattering (SAXS) and negative-stain EM to reveal that bivalent binding of human IL-34 to CSF-1R leads to an extracellular assembly hallmarked by striking similarities to the CSF-1:CSF-1R complex, including homotypic receptor-receptor interactions. Thus, IL-34 and CSF-1 have evolved to exploit the geometric requirements of CSF-1R activation. Our models include N-linked oligomannose glycans derived from a systematic approach resulting in the accurate fitting of glycosylated models to the SAXS data. We further show that the C-terminal region of IL-34 is heavily glycosylated and that it can be proteolytically cleaved from the IL-34:hCSF-1R complex, providing insights into its role in the functional nonredundancy of IL-34 and CSF-1.


Subject(s)
Interleukins/chemistry , Macrophage Colony-Stimulating Factor/chemistry , Models, Molecular , Multiprotein Complexes/chemistry , Protein Conformation , Receptor, Macrophage Colony-Stimulating Factor/chemistry , Humans , Microscopy, Electron , Scattering, Small Angle , Tandem Mass Spectrometry
SELECTION OF CITATIONS
SEARCH DETAIL
...