Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Language
Publication year range
1.
Article in English | AIM (Africa) | ID: biblio-1524052

ABSTRACT

Introduction: triglyceride-glucose (TyG) index is a reliable surrogate marker of insulin resistance. We assessed the association between triglyceride-glucose (TyG) index and vascular risk factors and clinical outcomes of critically ill adult COVID-19 patients. Methods: data from the charts of all patients with a confirmed diagnosis of COVID-19 who were hospitalized at Mengo Hospital Uganda from December 2020 to August 2021 was used for this study. Data on demographics, past medical history, clinical presentation, laboratory findings and clinical outcomes within the first 10 days of admission was extracted. TyG index was calculated as Inverse (triglyceride (mg/dl) x fasting glucose level (mg/dl)/2 and defined vascular risk factors using standard methods. Bivariate and multivariate logistic regression was conducted to establish a significant association. Statistical significance was set at p< 0.05. Results: out of 314 patients, 176 (56%) were females. The mean age ± SD was 58.2 years ± 16.82. The median TyG index was 9.76 (9.29-10.33). A high TyG index was found among 85.4% ( n= 268, 95% CI: 0.809-0.889) of patients. Elevated total cholesterol was in 55.4% (n=174), triglycerides 70.7% (n=222), LDL 64.7% (n=203), blood glucose 80.6% (n=253), systolic blood pressure 43% (n=135) and 24.8% (n=78) diastolic blood pressure. The majority 49.7% ( n=156) were discharged, 22.0% (n=69) needed admission to the intensive care unit (ICU), 15.3% (n=48) died in the unit and 13.0% (n=41) had a composite outcome. The TyG index was significantly associated with glycated hemoglobin (AOR=1.029, 95%CI 0.561-1.496, p<0.001), low-density lipoprotein cholesterol (AOR=0.121,95%CI 0.023-0.219,p=0.016), high-density cholesterol (AOR=1.956, 95%CI 1.299-2.945, p=0.001), total cholesterol (AOR=2.177, 95%CI 1.5222-3.144, p<0.001, hospital death (AOR=0.778, 95%CI 0.623-0.972, p=0.028) and composite outcome (AOR=1.823, 95% CI 1.221-2.559, p=0.023). There was no association between hypertension and TyG index Conclusion: a high TyG index was associated with vascular risk factors and clinical outcomes.


Subject(s)
COVID-19
2.
Pan Afr Med J ; 46: 113, 2023.
Article in English | MEDLINE | ID: mdl-38465013

ABSTRACT

Introduction: triglyceride-glucose (TyG) index is a reliable surrogate marker of insulin resistance. We assessed the association between triglyceride-glucose (TyG) index and vascular risk factors and clinical outcomes of critically ill adult COVID-19 patients. Methods: data from the charts of all patients with a confirmed diagnosis of COVID-19 who were hospitalized at Mengo Hospital Uganda from December 2020 to August 2021 was used for this study. Data on demographics, past medical history, clinical presentation, laboratory findings and clinical outcomes within the first 10 days of admission was extracted. TyG index was calculated as Inverse (triglyceride (mg/dl) x fasting glucose level (mg/dl)/2 and defined vascular risk factors using standard methods. Bivariate and multivariate logistic regression was conducted to establish a significant association. Statistical significance was set at p< 0.05. Results: out of 314 patients, 176 (56%) were females. The mean age ± SD was 58.2 years ± 16.82. The median TyG index was 9.76 (9.29-10.33). A high TyG index was found among 85.4% (n= 268, 95% CI: 0.809-0.889) of patients. Elevated total cholesterol was in 55.4% (n=174), triglycerides 70.7% (n=222), LDL 64.7% (n=203), blood glucose 80.6% (n=253), systolic blood pressure 43% (n=135) and 24.8% (n=78) diastolic blood pressure. The majority 49.7% ( n=156) were discharged, 22.0% (n=69) needed admission to the intensive care unit (ICU), 15.3% (n=48) died in the unit and 13.0% (n=41) had a composite outcome. The TyG index was significantly associated with glycated hemoglobin (AOR=1.029, 95%CI 0.561-1.496, p<0.001), low-density lipoprotein cholesterol (AOR=0.121,95%CI 0.023-0.219, p=0.016), high-density cholesterol (AOR=1.956, 95%CI 1.299-2.945, p=0.001), total cholesterol (AOR=2.177, 95%CI 1.5222-3.144, p<0.001, hospital death (AOR=0.778, 95%CI 0.623-0.972, p=0.028) and composite outcome (AOR=1.823, 95% CI 1.221-2.559, p=0.023). There was no association between hypertension and TyG index. Conclusion: a high TyG index was associated with vascular risk factors and clinical outcomes.


Subject(s)
COVID-19 , Hypercholesterolemia , Adult , Female , Humans , Male , Glucose , Triglycerides , Cross-Sectional Studies , Retrospective Studies , Uganda/epidemiology , Hospitals , Blood Glucose , Cholesterol, LDL , Biomarkers , Risk Factors
3.
PLoS One ; 7(12): e51319, 2012.
Article in English | MEDLINE | ID: mdl-23272097

ABSTRACT

TRIAL DESIGN: Best practices for training mid-level practitioners (MLPs) to improve global health-services are not well-characterized. Two hypotheses were: 1) Integrated Management of Infectious Disease (IMID) training would improve clinical competence as tested with a single arm, pre-post design, and 2) on-site support (OSS) would yield additional improvements as tested with a cluster-randomized trial. METHODS: Thirty-six Ugandan health facilities (randomized 1∶1 to parallel OSS and control arms) enrolled two MLPs each. All MLPs participated in IMID (3-week core course, two 1-week boost sessions, distance learning). After the 3-week course, OSS-arm trainees participated in monthly OSS. Twelve written case scenarios tested clinical competencies in HIV/AIDS, tuberculosis, malaria, and other infectious diseases. Each participant completed different randomly-assigned blocks of four scenarios before IMID (t0), after 3-week course (t1), and after second boost course (t2, 24 weeks after t1). Scoring guides were harmonized with IMID content and Ugandan national policy. Score analyses used a linear mixed-effects model. The primary outcome measure was longitudinal change in scenario scores. RESULTS: Scores were available for 856 scenarios. Mean correct scores at t0, t1, and t2 were 39.3%, 49.1%, and 49.6%, respectively. Mean score increases (95% CI, p-value) for t0-t1 (pre-post period) and t1-t2 (parallel-arm period) were 12.1 ((9.6, 14.6), p<0.001) and -0.6 ((-3.1, +1.9), p = 0.647) percent for OSS arm and 7.5 ((5.0, 10.0), p<0.001) and 1.6 ((-1.0, +4.1), p = 0.225) for control arm. The estimated mean difference in t1 to t2 score change, comparing arm A (participated in OSS) vs. arm B was -2.2 ((-5.8, +1.4), p = 0.237). From t0-t2, mean scores increased for all 12 scenarios. CONCLUSIONS: Clinical competence increased significantly after a 3-week core course; improvement persisted for 24 weeks. No additional impact of OSS was observed. Data on clinical practice, facility-level performance and health outcomes will complete assessment of overall impact of IMID and OSS. TRIAL REGISTRATION: ClinicalTrials.gov NCT01190540.


Subject(s)
Infectious Disease Medicine/methods , Malaria/therapy , Tuberculosis/therapy , Adult , Capacity Building , Child , Clinical Competence , Cluster Analysis , Education, Distance , Education, Medical, Continuing , HIV Infections/drug therapy , Health Policy , Health Services Research , Humans , Infectious Disease Medicine/education , Linear Models , Outcome Assessment, Health Care , Research Design , Time Factors , Uganda
SELECTION OF CITATIONS
SEARCH DETAIL
...