Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 28
Filter
Add more filters










Publication year range
1.
Front Toxicol ; 6: 1370045, 2024.
Article in English | MEDLINE | ID: mdl-38646442

ABSTRACT

The ICH S1B carcinogenicity global testing guideline has been recently revised with a novel addendum that describes a comprehensive integrated Weight of Evidence (WoE) approach to determine the need for a 2-year rat carcinogenicity study. In the present work, experts from different organizations have joined efforts to standardize as much as possible a procedural framework for the integration of evidence associated with the different ICH S1B(R1) WoE criteria. The framework uses a pragmatic consensus procedure for carcinogenicity hazard assessment to facilitate transparent, consistent, and documented decision-making and it discusses best-practices both for the organization of studies and presentation of data in a format suitable for regulatory review. First, it is acknowledged that the six WoE factors described in the addendum form an integrated network of evidence within a holistic assessment framework that is used synergistically to analyze and explain safety signals. Second, the proposed standardized procedure builds upon different considerations related to the primary sources of evidence, mechanistic analysis, alternative methodologies and novel investigative approaches, metabolites, and reliability of the data and other acquired information. Each of the six WoE factors is described highlighting how they can contribute evidence for the overall WoE assessment. A suggested reporting format to summarize the cross-integration of evidence from the different WoE factors is also presented. This work also notes that even if a 2-year rat study is ultimately required, creating a WoE assessment is valuable in understanding the specific factors and levels of human carcinogenic risk better than have been identified previously with the 2-year rat bioassay alone.

2.
Regul Toxicol Pharmacol ; 149: 105591, 2024 May.
Article in English | MEDLINE | ID: mdl-38467236

ABSTRACT

Post-market medical device-associated failures and patient problems are reported in Medical Device Reports (MDRs) to the US Food and Drug Administration. Reports are accessible through Manufacturer and User Facility Device Experience (MAUDE), a database including both required and voluntary submissions. We present an overview of >10 million MDRs received from 2011 to 2021. Approximately 92% of reporting issues represent medical device physical or functional failures, categorized from 1704 codes related to medical device integrity or function. ∼8% were coded adverse events (AEs). Patient outcomes are reported via 998 patient codes in 19 medical specialties (cardiovascular, orthopedic, etc.). ∼40% of patient reports indicated "no health consequences"; however, a small number of devices had consistently high AE reports. While overall reports did not exhibit a sex-based dichotomy, ∼9% of the reported AEs occurred more frequently in females, many of which were related to immune effects. The analyses are subject to uncertainties and potential bias based on data available and data selected for analysis. However, such an overview of post-market MDR data, not previously published, fills a gap in understanding medical device issues and patient-based outcomes related to medical device use. Trends identified may be subjects of additional hypotheses, analysis, and research.


Subject(s)
Equipment and Supplies , Product Surveillance, Postmarketing , United States Food and Drug Administration , Humans , Female , United States , Equipment and Supplies/adverse effects , Male , Databases, Factual , Sex Factors , Equipment Failure
3.
Photochem Photobiol ; 2023 Jul 26.
Article in English | MEDLINE | ID: mdl-37496175

ABSTRACT

Various fluorescence imaging agents are currently under clinical studies. Despite significant benefits, phototoxicity is a barrier to the clinical translation of fluorophores. Current regulatory guidelines on medication-based phototoxicity focus on skin effects during sun exposure. However, with systemic and local administration of fluorophores and targeted illumination, there is now possibility of photochemical damage to deeper tissues during intraoperative imaging procedures. Hence, independent knowledge regarding phototoxicity is required to facilitate the development of fluorescence imaging products. Previously, we studied a cell-free assay for initial screening of reactive molecular species generation from fluorophores. The current work addresses a safety test method based on cell viability as an adjunct and a comparator with the cell-free assay. Our goal is to modify and implement an approach based on the in vitro 3T3 neutral red uptake assay of the Organization for Economic Co-Operation and Development Test Guideline 432 (OECD TG432) to evaluate the photocytotoxicity of clinically relevant fluorophores. These included indocyanine green (ICG), proflavine, methylene blue (MB), and IRDye800, as well as control photosensitizers, benzoporphyrin derivative (BPD) and rose bengal (RB). We performed measurements at agent concentrations and illumination parameters used for clinic imaging. Our results aligned with prior studies, indicating photocytotoxicity in RB and BPD and an absence of reactivity for ICG and IRDye800. DNA interactive agents, proflavine and MB, exhibited drug/light dose-response curves like photosensitizers. This study provides evidence and insights into practices useful for testing the photochemical safety of fluorescence imaging products.

4.
Front Toxicol ; 5: 1171960, 2023.
Article in English | MEDLINE | ID: mdl-37180488

ABSTRACT

The in vitro micronucleus (MNvit) assay is used to evaluate the aneugenic and clastogenic potential of a test material based upon its ability to induce micronuclei in the cells. This protocol is provided for testing of nanomaterials (NM) with standard cell lines in the absence of metabolic activation. The use of cytochalasin B (CytoB) and the analysis of binucleated cells in the cytokinesis-block version of the micronucleus assay ensures that cells analyzed have undergone cell division, which is required for expression of DNA damage and micronucleus formation. Issues specific to NM that were problematic with standard test methods are addressed, including test system choice, dose selection, test material exposures, CytoB timing, cytotoxicity determination, and DNA damage expression time. A step-by-step protocol for in vitro micronucleus assessment of NM is provided.

5.
Regul Toxicol Pharmacol ; 141: 105410, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37210026

ABSTRACT

Propranolol is a widely used ß-blocker that can generate a nitrosated derivative, N-nitroso propranolol (NNP). NNP has been reported to be negative in the bacterial reverse mutation test (the Ames test) but genotoxic in other in vitro assays. In the current study, we systematically examined the in vitro mutagenicity and genotoxicity of NNP using several modifications of the Ames test known to affect the mutagenicity of nitrosamines, as well as a battery of genotoxicity tests using human cells. We found that NNP induced concentration-dependent mutations in the Ames test, both in two tester strains that detect base pair substitutions, TA1535 and TA100, as well as in the TA98 frameshift-detector strain. Although positive results were seen with rat liver S9, the hamster liver S9 fraction was more effective in bio-transforming NNP into a reactive mutagen. NNP also induced micronuclei and gene mutations in human lymphoblastoid TK6 cells in the presence of hamster liver S9. Using a panel of TK6 cell lines that each expresses a different human cytochrome P450 (CYP), CYP2C19 was identified as the most active enzyme in the bioactivation of NNP to a genotoxicant among those tested. NNP also induced concentration-dependent DNA strand breakage in metabolically competent 2-dimensional (2D) and 3D cultures of human HepaRG cells. This study indicates that NNP is genotoxic in a variety of bacterial and mammalian systems. Thus, NNP is a mutagenic and genotoxic nitrosamine and a potential human carcinogen.


Subject(s)
Mutagens , Propranolol , Rats , Animals , Cricetinae , Humans , Mutagens/toxicity , Propranolol/toxicity , Mutation , DNA Damage , Mutagenesis , Mutagenicity Tests/methods , Mammals
6.
Front Toxicol ; 4: 859122, 2022.
Article in English | MEDLINE | ID: mdl-35686044

ABSTRACT

Genotoxicity testing is performed to determine potential hazard of a chemical or agent for direct or indirect DNA interaction. Testing may be a surrogate for assessment of heritable genetic risk or carcinogenic risk. Testing of nanomaterials (NM) for hazard identification is generally understood to require a departure from normal testing procedures found in international standards and guidelines. A critique of the genotoxicity literature in Elespuru et al., 2018, reinforced evidence of problems with genotoxicity assessment of nanomaterials (NM) noted by many previously. A follow-up to the critique of problems (what is wrong) is a series of methods papers in this journal designed to provide practical information on what is appropriate (right) in the performance of genotoxicity assays altered for NM assessment. In this "Common Considerations" paper, general considerations are addressed, including NM characterization, sample preparation, dosing choice, exposure assessment (uptake) and data analysis that are applicable to any NM genotoxicity assessment. Recommended methods for specific assays are presented in a series of additional papers in this special issue of the journal devoted to toxicology methods for assessment of nanomaterials: the In vitro Micronucleus Assay, TK Mutagenicity assays, and the In vivo Comet Assay. In this context, NM are considered generally as insoluble particles or test articles in the nanometer size range that present difficulties in assessment using techniques described in standards such as OECD guidelines.

7.
Front Toxicol ; 4: 903896, 2022.
Article in English | MEDLINE | ID: mdl-35707495

ABSTRACT

The in vivo Comet assay measures the generation of DNA strand breaks under conditions in which the DNA will unwind and migrate to the anode in an electrophoresis assay, producing comet-like figures. Measurements are on single cells, which allows the sampling of a diversity of cells and tissues for DNA damaging effects. The Comet assay is the most common in vivo method for genotoxicity assessment of nanomaterials (NM). The Method outlined here includes a recommended step-by-step approach, consistent with OECD 489, taking into consideration the issues impacting assessment of NM, including choice of cells or systems, handling of NM test articles, dose determination, assay methods and data assessment. This method is designed to be used along with the accompanying "Common Considerations" paper, which discusses issues common to any genotoxicity assay using NM as a test article.

8.
Front Toxicol ; 4: 864753, 2022.
Article in English | MEDLINE | ID: mdl-35757197

ABSTRACT

The methods outlined here are part of a series of papers designed specifically for genotoxicity assessment of nanomaterials (NM). Common Considerations such as NM characterization, sample preparation and dose selection, relevant to all genotoxicity assays, are found in an accompanying paper. The present paper describes methods for evaluation of mutagenicity in the mammalian (mouse) thymidine kinase (Tk) gene occurring in L5178Y mouse lymphoma (ML) cells and in the designated TK gene in human lymphoblastoid TK6 cells. Mutations change the functional genotype from TK+/- to TK-/-, detectable as cells surviving on media selective for the lack of thymidine kinase (TK) function. Unlike cells with TK enzyme function, the TK-/- cells are unable to integrate the toxic selection agent, allowing these cells to survive as rare mutant colonies. The ML assay has been shown to detect a broad spectrum of genetic damage, including both small scale (point) mutations and chromosomal alterations. This assay is a widely used mammalian cell gene mutation assay for regulatory purposes and is included in the core battery of genotoxicity tests for regulatory decision-making. The TK6 assay is an assay using a human cell line derived similarly via mutagenic manipulations and optimal selection. Details are provided on the materials required, cell culture methods, selection of test chemical concentrations, cytotoxicity, treatment time, mutation expression, cloning, and data calculation and interpretation. The methods describe the microwell plate version of the assays without metabolic activation.

9.
Photochem Photobiol ; 98(4): 736-747, 2022 07.
Article in English | MEDLINE | ID: mdl-35442536

ABSTRACT

The benefits of contrast-enhancing imaging probes have become apparent over the past decade. However, there is a gap in the literature when it comes to the assessment of the phototoxic potential of imaging probes and systems emitting visible and/or near-infrared radiation. The primary mechanism of fluorescent agent phototoxicity is thought to involve the production of reactive molecular species (RMS), yet little has been published on the best practices for safety evaluation of RMS production levels for clinical products. We have proposed methods involving a cell-free assay to quantify singlet oxygen [(SO) a known RMS] generation of imaging probes, and performed testing of Indocyanine Green (ICG), Proflavine, Methylene Blue, IR700 and IR800 at clinically relevant concentrations and radiant exposures. Results indicated that SO production from IR800 and ICG were more than two orders of magnitude below that of the known SO generator Rose Bengal. Methylene Blue and IR700 produced much higher SO levels than ICG and IR800. These results were in good agreement with data from the literature. While agents that exhibit spectral overlap with the assay may be more prone to errors, our tests for one of these agents (Proflavine) appeared robust. Overall, our results indicate that this methodology shows promise for assessing the phototoxic potential of fluorophores due to SO production.


Subject(s)
Methylene Blue , Singlet Oxygen , Indocyanine Green , Optical Imaging , Proflavine
10.
Article in English | MEDLINE | ID: mdl-34454692

ABSTRACT

Kirkland et al. [Mutation Research/Genetic Toxicology and Environmental Mutagenesis 847 (2019) 403035, https://doi.org/10.1016/j.mrgentox.2019.03.008; Mutation Research/Genetic Toxicology and Environmental Mutagenesis 839 (2019): 21-35, https://doi.org/10.1016/j.mrgentox.2019.01.007] made recommendations on the use of the in vivo comet and transgenic rodent (TGR) gene mutation assays to screen for in vivo mutagenicity. Although it is not directly stated in either of these publications, we are concerned that the reports could potentially be used to support assertions that it is equally acceptable to follow up a positive bacterial reverse mutation (Ames) finding for an investigational drug with either the in vivo TGR mutation assay or an in vivo comet assay. For regulatory genotoxicity assessment, the in vivo follow-up for an in vitro bacterial mutation-positive drug, drug-related metabolite, or impurity should be based upon evaluating a similar endpoint (i.e., mutagenicity) as the intent is to determine if the findings of in vitro gene mutation correlate with findings of in vivo gene mutation (i.e., biologically relevant to the in vitro results). Thus, the most scientifically appropriate in vivo assays would be the TGR mutation assay or, in some circumstances, the in vivo Pig-a assay. An in vivo rodent comet assay or combination of the in vivo micronucleus and in vivo rodent comet assays would generally not be an appropriate follow-up test.


Subject(s)
Biological Assay/methods , Drugs, Investigational/chemistry , Drugs, Investigational/metabolism , Mutation/drug effects , Animals , Animals, Genetically Modified/genetics , Carcinogens/toxicity , Comet Assay/methods , Follow-Up Studies , Micronucleus Tests/methods , Mutagenicity Tests/methods , Mutagens/toxicity , Rodentia
11.
Comput Toxicol ; 202021 Nov.
Article in English | MEDLINE | ID: mdl-35368437

ABSTRACT

Historically, identifying carcinogens has relied primarily on tumor studies in rodents, which require enormous resources in both money and time. In silico models have been developed for predicting rodent carcinogens but have not yet found general regulatory acceptance, in part due to the lack of a generally accepted protocol for performing such an assessment as well as limitations in predictive performance and scope. There remains a need for additional, improved in silico carcinogenicity models, especially ones that are more human-relevant, for use in research and regulatory decision-making. As part of an international effort to develop in silico toxicological protocols, a consortium of toxicologists, computational scientists, and regulatory scientists across several industries and governmental agencies evaluated the extent to which in silico models exist for each of the recently defined 10 key characteristics (KCs) of carcinogens. This position paper summarizes the current status of in silico tools for the assessment of each KC and identifies the data gaps that need to be addressed before a comprehensive in silico carcinogenicity protocol can be developed for regulatory use.

12.
Polymers (Basel) ; 12(7)2020 Jul 03.
Article in English | MEDLINE | ID: mdl-32635323

ABSTRACT

Lithium phenyl (2,4,6-trimethylbenzoyl) phosphinate (LAP) is a free radical photo-initiator used to initiate free radical chain polymerization upon light exposure, and is combined with gelatin methacryloyl (GelMA) to produce a photopolymer used in bioprinting. The free radicals produced under bioprinting conditions are potentially cytotoxic and mutagenic. Since these photo-generated free radicals are highly-reactive but short-lived, toxicity assessments should be conducted with light exposure. In this study, photorheology determined that 10 min exposure to 9.6 mW/cm2 405 nm light from an LED light source fully crosslinked 10 wt % GelMA with >3.4 mmol/L LAP, conditions that were used for subsequent cytotoxicity and mutagenicity assessments. These conditions were cytotoxic to M-1 mouse kidney collecting duct cells, a cell type susceptible to lithium toxicity. Exposure to ≤17 mmol/L (0.5 wt %) LAP without light was not cytotoxic; however, concurrent exposure to ≥3.4 mmol/L LAP and light was cytotoxic. No condition of LAP and/or light exposure evaluated was mutagenic in bacterial reverse mutation assays using S. typhimurium strains TA98, TA100 and E. coli WP2 uvrA. These data indicate that the combination of LAP and free radicals generated from photo-excited LAP is cytotoxic, but mutagenicity was not observed in bacteria under typical bioprinting conditions.

13.
Article in English | MEDLINE | ID: mdl-32087853

ABSTRACT

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to obtain consensus on unresolved issues associated with genotoxicity testing. At the 2017 IWGT meeting in Tokyo, four sub-groups addressed issues associated with the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471, which describes the use of bacterial reverse-mutation tests. The strains sub-group analyzed test data from >10,000 chemicals, tested additional chemicals, and concluded that some strains listed in TG471 are unnecessary because they detected fewer mutagens than other strains that the guideline describes as equivalent. Thus, they concluded that a smaller panel of strains would suffice to detect most mutagens. The laboratory proficiency sub-group recommended (a) establishing strain cell banks, (b) developing bacterial growth protocols that optimize assay sensitivity, and (c) testing "proficiency compounds" to gain assay experience and establish historical positive and control databases. The sub-group on criteria for assay evaluation recommended that laboratories (a) track positive and negative control data; (b) develop acceptability criteria for positive and negative controls; (c) optimize dose-spacing and the number of analyzable doses when there is evidence of toxicity; (d) use a combination of three criteria to evaluate results: a dose-related increase in revertants, a clear increase in revertants in at least one dose relative to the concurrent negative control, and at least one dose that produced an increase in revertants above control limits established by the laboratory from historical negative controls; and (e) establish experimental designs to resolve unclear results. The in silico sub-group summarized in silico utility as a tool in genotoxicity assessment but made no specific recommendations for TG471. Thus, the workgroup identified issues that could be addressed if TG471 is revised. The companion papers (a) provide evidence-based approaches, (b) recommend priorities, and (c) give examples of clearly defined terms to support revision of TG471.


Subject(s)
Escherichia coli/drug effects , Mutagenesis , Mutagenicity Tests/standards , Mutagens/toxicity , Salmonella typhimurium/drug effects , Animals , Biological Specimen Banks/organization & administration , Databases, Chemical/supply & distribution , Escherichia coli/genetics , Guidelines as Topic , Humans , International Cooperation , Mutagens/classification , Salmonella typhimurium/genetics , Tokyo
14.
Environ Mol Mutagen ; 61(1): 152-175, 2020 01.
Article in English | MEDLINE | ID: mdl-31469467

ABSTRACT

Cancer driver mutations (CDMs) are necessary and causal for carcinogenesis and have advantages as reporters of carcinogenic risk. However, little progress has been made toward developing measurements of CDMs as biomarkers for use in cancer risk assessment. Impediments for using a CDM-based metric to inform cancer risk include the complexity and stochastic nature of carcinogenesis, technical difficulty in quantifying low-frequency CDMs, and lack of established relationships between cancer driver mutant fractions and tumor incidence. Through literature review and database analyses, this review identifies the most promising targets to investigate as biomarkers of cancer risk. Mutational hotspots were discerned within the 20 most mutated genes across the 10 deadliest cancers. Forty genes were identified that encompass 108 mutational hotspot codons overrepresented in the COSMIC database; 424 different mutations within these hotspot codons account for approximately 63,000 tumors and their prevalence across tumor types is described. The review summarizes literature on the prevalence of CDMs in normal tissues and suggests such mutations are direct and indirect substrates for chemical carcinogenesis, which occurs in a spatially stochastic manner. Evidence that hotspot CDMs (hCDMs) frequently occur as tumor subpopulations is presented, indicating COSMIC data may underestimate mutation prevalence. Analyses of online databases show that genes containing hCDMs are enriched in functions related to intercellular communication. In its totality, the review provides a roadmap for the development of tissue-specific, CDM-based biomarkers of carcinogenic potential, comprised of batteries of hCDMs and can be measured by error-correct next-generation sequencing. Environ. Mol. Mutagen. 61:152-175, 2020. Published 2019. This article is a U.S. Government work and is in the public domain in the USA. Environmental and Molecular Mutagenesis published by Wiley Periodicals, Inc. on behalf of Environmental Mutagen Society.


Subject(s)
Carcinogenesis/genetics , Mutation , Neoplasms/genetics , Animals , Biomarkers, Tumor/genetics , Carcinogenesis/chemically induced , Carcinogens/toxicity , High-Throughput Nucleotide Sequencing/methods , Humans , Mutation/drug effects , Neoplasms/chemically induced , Risk Assessment/methods
15.
Article in English | MEDLINE | ID: mdl-31708075

ABSTRACT

The International Workshop on Genotoxicity Testing (IWGT) meets every four years to seek consensus on difficult or conflicting approaches to genotoxicity testing based upon experience, available data, and analysis techniques. At the 2017 IWGT meeting in Tokyo, one working group addressed the sensitivity and selectivity of the bacterial strains specified in the Organization for Economic Cooperation and Development (OECD) Test Guideline TG471 to recommend possible modification of the test guideline. Three questions were posed: (1) Although TA100 is derived from TA1535, does TA1535 detect any mutagens that are not detected by TA100? (2) Among the options of Salmonella TA1537, TA97 or TA97a, are these strains truly equivalent? (3) Because there is a choice to use one of either E. coli WP2 uvrA, E. coli WP2 uvrA pKM101, or Salmonella TA102, are these strains truly equivalent? To answer these questions, we analyzed published bacterial mutation data in multiple strains from large (>10,000 compound) databases from Leadscope and Lhasa Limited and anonymized data for 53 compounds tested in TA1535 and TA100 provided by a pharmaceutical company. Our analysis involved (1) defining criteria for determining selective responses when using different strains; (2) identifying compounds producing selective responses based upon author calls; (3) confirming selective responses by visually examining dose-response data and considering experimental conditions; (4) using statistical methods to quantify the responses; (5) performing limited additional direct-comparison testing; and (6) determining the chemical classes producing selective responses. We found that few mutagens would fail to be detected if the test battery did not include Salmonella strains TA1535 (8/1167), TA1537 (2/247), TA102 (4/46), and E. coli WP2 uvrA (2/21). Of the mutagens detected by the full TG471 strain battery, 93% were detected using only strains TA98 and TA100; consideration of results from in vitro genotoxicity assays that detect clastogenicity increased this to 99%.


Subject(s)
Guidelines as Topic , Mutagenicity Tests/standards , Escherichia coli/genetics , Salmonella/genetics
16.
Article in English | MEDLINE | ID: mdl-31708077

ABSTRACT

The bacterial reverse mutation test is a mainstay for evaluation of mutagenicity predicting the carcinogenic potential of a test substance and is recommended by regulatory agencies across the globe. The popularity of the test is due, in part, to the relatively low cost, rapid results and small amount of test material required compared to most other toxicological tests as well as the near universal acceptance of the toxicological significance of a clear positive or negative result. Most laboratories follow the Organization for Economic Cooperation and Development Test Guideline 471 (TG471) or national guidelines based on TG471. Regulatory agencies in most countries are obligated to consider results from tests which meet the recommendations laid out in TG471. Nonetheless, laboratories unfamiliar with the test sometimes have trouble generating reliable, reproducible results. TG471 is a test guideline, not a detailed test protocol. A group of experts from regulatory agencies and laboratories which use the assay has assembled here a set of recommendations which if followed, will allow an inexperienced laboratory to acquire proficiency in assay conduct. These include recommendations for how to create a cell bank for the 5 Salmonella typhimurium/Escherichia coli strains and develop a laboratory protocol to reliably culture each strain to ensure each culture has the characteristics which allow adequate sensitivity for detection of mutagens using the test as described in TG471. By testing compounds on the provided lists of positive and negative test substances, the laboratory will have surmounted many of the problems commonly encountered during routine testing of unknown chemicals and will have gained the experience necessary to prepare the detailed protocol needed for performing the test under Good Laboratory Procedures and the laboratory will have generated the historical positive and negative control databases which are needed for test reports which adhere to TG471.


Subject(s)
Efficiency, Organizational , Escherichia coli/genetics , Laboratories/organization & administration , Mutagenicity Tests , Salmonella typhimurium/genetics
17.
Toxicol Sci ; 164(2): 391-416, 2018 08 01.
Article in English | MEDLINE | ID: mdl-29701824

ABSTRACT

Nanomaterials (NMs) present unique challenges in safety evaluation. An international working group, the Genetic Toxicology Technical Committee of the International Life Sciences Institute's Health and Environmental Sciences Institute, has addressed issues related to the genotoxicity assessment of NMs. A critical review of published data has been followed by recommendations on methods alterations and best practices for the standard genotoxicity assays: bacterial reverse mutation (Ames); in vitro mammalian assays for mutations, chromosomal aberrations, micronucleus induction, or DNA strand breaks (comet); and in vivo assays for genetic damage (micronucleus, comet and transgenic mutation assays). The analysis found a great diversity of tests and systems used for in vitro assays; many did not meet criteria for a valid test, and/or did not use validated cells and methods in the Organization for Economic Co-operation and Development Test Guidelines, and so these results could not be interpreted. In vivo assays were less common but better performed. It was not possible to develop conclusions on test system agreement, NM activity, or mechanism of action. However, the limited responses observed for most NMs were consistent with indirect genotoxic effects, rather than direct interaction of NMs with DNA. We propose a revised genotoxicity test battery for NMs that includes in vitro mammalian cell mutagenicity and clastogenicity assessments; in vivo assessments would be added only if warranted by information on specific organ exposure or sequestration of NMs. The bacterial assays are generally uninformative for NMs due to limited particle uptake and possible lack of mechanistic relevance, and are thus omitted in our recommended test battery for NM assessment. Recommendations include NM characterization in the test medium, verification of uptake into target cells, and limited assay-specific methods alterations to avoid interference with uptake or endpoint analysis. These recommendations are summarized in a Roadmap guideline for testing.


Subject(s)
Mutagenicity Tests/methods , Nanostructures/toxicity , Animals , Chromosome Aberrations , Comet Assay , Humans , In Vitro Techniques/methods , Mutagenicity Tests/standards , Mutation
18.
Environ Mol Mutagen ; 58(5): 264-283, 2017 06.
Article in English | MEDLINE | ID: mdl-27650663

ABSTRACT

For several decades, regulatory testing schemes for genetic damage have been standardized where the tests being utilized examined mutations and structural and numerical chromosomal damage. This has served the genetic toxicity community well when most of the substances being tested were amenable to such assays. The outcome from this testing is usually a dichotomous (yes/no) evaluation of test results, and in many instances, the information is only used to determine whether a substance has carcinogenic potential or not. Over the same time period, mechanisms and modes of action (MOAs) that elucidate a wider range of genomic damage involved in many adverse health outcomes have been recognized. In addition, a paradigm shift in applied genetic toxicology is moving the field toward a more quantitative dose-response analysis and point-of-departure (PoD) determination with a focus on risks to exposed humans. This is directing emphasis on genomic damage that is likely to induce changes associated with a variety of adverse health outcomes. This paradigm shift is moving the testing emphasis for genetic damage from a hazard identification only evaluation to a more comprehensive risk assessment approach that provides more insightful information for decision makers regarding the potential risk of genetic damage to exposed humans. To enable this broader context for examining genetic damage, a next generation testing strategy needs to take into account a broader, more flexible approach to testing, and ultimately modeling, of genomic damage as it relates to human exposure. This is consistent with the larger risk assessment context being used in regulatory decision making. As presented here, this flexible approach for examining genomic damage focuses on testing for relevant genomic effects that can be, as best as possible, associated with an adverse health effect. The most desired linkage for risk to humans would be changes in loci associated with human diseases, whether in somatic or germ cells. The outline of a flexible approach and associated considerations are presented in a series of nine steps, some of which can occur in parallel, which was developed through a collaborative effort by leading genetic toxicologists from academia, government, and industry through the International Life Sciences Institute (ILSI) Health and Environmental Sciences Institute (HESI) Genetic Toxicology Technical Committee (GTTC). The ultimate goal is to provide quantitative data to model the potential risk levels of substances, which induce genomic damage contributing to human adverse health outcomes. Any good risk assessment begins with asking the appropriate risk management questions in a planning and scoping effort. This step sets up the problem to be addressed (e.g., broadly, does genomic damage need to be addressed, and if so, how to proceed). The next two steps assemble what is known about the problem by building a knowledge base about the substance of concern and developing a rational biological argument for why testing for genomic damage is needed or not. By focusing on the risk management problem and potential genomic damage of concern, the next step of assay(s) selection takes place. The work-up of the problem during the earlier steps provides the insight to which assays would most likely produce the most meaningful data. This discussion does not detail the wide range of genomic damage tests available, but points to types of testing systems that can be very useful. Once the assays are performed and analyzed, the relevant data sets are selected for modeling potential risk. From this point on, the data are evaluated and modeled as they are for any other toxicology endpoint. Any observed genomic damage/effects (or genetic event(s)) can be modeled via a dose-response analysis and determination of an estimated PoD. When a quantitative risk analysis is needed for decision making, a parallel exposure assessment effort is performed (exposure assessment is not detailed here as this is not the focus of this discussion; guidelines for this assessment exist elsewhere). Then the PoD for genomic damage is used with the exposure information to develop risk estimations (e.g., using reference dose (RfD), margin of exposure (MOE) approaches) in a risk characterization and presented to risk managers for informing decision making. This approach is applicable now for incorporating genomic damage results into the decision-making process for assessing potential adverse outcomes in chemically exposed humans and is consistent with the ILSI HESI Risk Assessment in the 21st Century (RISK21) roadmap. This applies to any substance to which humans are exposed, including pharmaceuticals, agricultural products, food additives, and other chemicals. It is time for regulatory bodies to incorporate the broader knowledge and insights provided by genomic damage results into the assessments of risk to more fully understand the potential of adverse outcomes in chemically exposed humans, thus improving the assessment of risk due to genomic damage. The historical use of genomic damage data as a yes/no gateway for possible cancer risk has been too narrowly focused in risk assessment. The recent advances in assaying for and understanding genomic damage, including eventually epigenetic alterations, obviously add a greater wealth of information for determining potential risk to humans. Regulatory bodies need to embrace this paradigm shift from hazard identification to quantitative analysis and to incorporate the wider range of genomic damage in their assessments of risk to humans. The quantitative analyses and methodologies discussed here can be readily applied to genomic damage testing results now. Indeed, with the passage of the recent update to the Toxic Substances Control Act (TSCA) in the US, the new generation testing strategy for genomic damage described here provides a regulatory agency (here the US Environmental Protection Agency (EPA), but suitable for others) a golden opportunity to reexamine the way it addresses risk-based genomic damage testing (including hazard identification and exposure). Environ. Mol. Mutagen. 58:264-283, 2017. © 2016 The Authors. Environmental and Molecular Mutagenesis Published by Wiley Periodicals, Inc.


Subject(s)
Genomics/methods , Mutagenicity Tests/trends , Animals , Environmental Health , Humans , Models, Theoretical , Mutagenicity Tests/standards , Mutagens/toxicity , Risk Assessment
19.
Regul Toxicol Pharmacol ; 74: 178-86, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26387931

ABSTRACT

Next-Generation Sequencing is a rapidly advancing technology that has research and clinical applications. For many cancers, it is important to know the precise mutation(s) present, as specific mutations could indicate or contra-indicate certain treatments as well as be indicative of prognosis. Using the Ion Torrent Personal Genome Machine and the AmpliSeq Cancer Hotspot panel v2, we sequenced two pancreatic cancer cell lines, BxPC-3 and HPAF-II, alone or in mixtures, to determine the error rate, sensitivity, and reproducibility of this system. The system resulted in coverage averaging 2000× across the various amplicons and was able to reliably and reproducibly identify mutations present at a rate of 5%. Identification of mutations present at a lower rate was possible by altering the parameters by which calls were made, but with an increase in erroneous, low-level calls. The panel was able to identify known mutations in these cell lines that are present in the COSMIC database. In addition, other, novel mutations were also identified that may prove clinically useful. The system was assessed for systematic errors such as homopolymer effects, end of amplicon effects and patterns in NO CALL sequence. Overall, the system is adequate at identifying the known, targeted mutations in the panel.


Subject(s)
Biomarkers, Tumor/genetics , DNA Mutational Analysis , Gene Expression Profiling , Genome, Human , Genomics/methods , High-Throughput Nucleotide Sequencing , Mutation , Pancreatic Neoplasms/genetics , Cell Line, Tumor , Computational Biology , Databases, Genetic , Genetic Predisposition to Disease , Humans , Oligonucleotide Array Sequence Analysis , Pancreatic Neoplasms/pathology , Phenotype , Reproducibility of Results , Software
20.
Mutagenesis ; 30(4): 577-91, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25964273

ABSTRACT

The focus of this research was to develop a better understanding of the pertinent physico-chemical properties of silver nanoparticles (AgNPs) that affect genotoxicity, specifically how cellular uptake influences a genotoxic cell response. The genotoxicity of AgNPs was assessed for three potential mechanisms: mutagenicity, clastogenicity and DNA strand-break-based DNA damage. Mutagenicity (reverse mutation assay) was assessed in five bacterial strains of Salmonella typhimurium and Echerichia coli, including TA102 that is sensitive to oxidative DNA damage. AgNPs of all sizes tested (10, 20, 50 and 100nm), along with silver nitrate (AgNO3), were negative for mutagenicity in bacteria. No AgNPs could be identified within the bacteria cells using transmission electron microscopy (TEM), indicating these bacteria lack the ability to actively uptake AgNPs 10nm or larger. Clastogenicity (flow cytometry-based micronucleus assay) and intermediate DNA damage (DNA strand breaks as measured in the Comet assay) were assessed in two mammalian white blood cell lines: Jurkat Clone E6-1 and THP-1. It was observed that micronucleus and Comet assay end points were inversely correlated with AgNP size, with smaller NPs inducing a more genotoxic response. TEM results indicated that AgNPs were confined within intracellular vesicles of mammalian cells and did not penetrate the nucleus. The genotoxicity test results and the effect of AgNO3 controls suggest that silver ions may be the primary, and perhaps only, cause of genotoxicity. Furthermore, since AgNO3 was not mutagenic in the gram-negative bacterial Ames strains tested, the lack of bacterial uptake of the AgNPs may not be the major reason for the lack of genotoxicity observed.


Subject(s)
Anti-Bacterial Agents/pharmacology , DNA Damage/drug effects , Escherichia coli/genetics , Metal Nanoparticles/administration & dosage , Mutagens/pharmacology , Salmonella typhimurium/genetics , Silver/chemistry , Cell Survival/drug effects , Cell Survival/genetics , Cells, Cultured , Comet Assay , DNA Damage/genetics , DNA Repair/drug effects , Escherichia coli/drug effects , Escherichia coli/metabolism , Escherichia coli Infections/drug therapy , Escherichia coli Infections/genetics , Escherichia coli Infections/microbiology , Humans , Jurkat Cells , Metal Nanoparticles/chemistry , Micronucleus Tests/methods , Microscopy, Electron, Transmission , Monocytes/cytology , Monocytes/drug effects , Monocytes/metabolism , Mutagenicity Tests/methods , Salmonella typhimurium/drug effects , Salmonella typhimurium/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...