Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
Foods ; 13(11)2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38890993

ABSTRACT

The electrical impedance of dilute aqueous solutions containing extracts from five brands of canned tuna is analyzed using impedance spectroscopy in order to analyze their salt content and detect the potential presence of other salts beyond the well-stated NaCl. A complex electrical impedance is modeled with an equivalent electrical circuit, demonstrating good agreement with experimental data. This circuit accounts for the contribution of ions in the bulk solution, as well as those contributing to electrode polarization. The parameters describing the equivalent circuits, obtained through fitting data to the electrical impedance, are discussed in terms of the various ion contributions to both the electrical double layer at the electrode interface and the electrical conductivity of each solution. The ionic contribution to the electrical impedance is compared with that of a pure NaCl solution at the same concentration range. This comparison, when extended to real samples, allows for the development of a model to estimate the electrical conductivity of canned tuna samples, thereby determining the salt concentration in tuna. The model enables differentiation among the various samples of tuna studied. Subsequently, the potential presence of other ions besides Na+ and Cl- and their contribution to the electrical properties of each canned tuna extract is considered, especially for samples with a higher ratio of the sum of K+ and phosphates to Na+ concentration. This analysis shows the potential of impedance spectroscopy for on-site and rapid analysis of salt content and/or detection of additives in canned tuna fish.

2.
Biosensors (Basel) ; 13(10)2023 Oct 11.
Article in English | MEDLINE | ID: mdl-37887117

ABSTRACT

The pandemic caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) caused more than 6 million deaths all over the world, demonstrating the need for a simple, fast and cost-effective point-of-care (POC) test for the detection of the virus. In this work, we developed an electrochemical sensor for SARS-CoV-2 virus detection on clinical samples based on loop-mediated isothermal amplification (LAMP). With the development of this novel sensor, the time of each measurement is significantly reduced by avoiding the DNA extraction step and replacing it with inactivation of the sample by heating it at 95 °C for 10 min. To make the reaction compatible with the sample pre-treatment, an RNase inhibitor was added directly to the premix. The LAMP product was measured in a novel, easy-to-use manufactured sensor containing a custom-made screen-printed carbon electrode. Electrochemical detection was performed with a portable potentiostat, and methylene blue was used as the redox-transducing molecule. The developed sensor achieved a limit of detection of 62 viral copies and was 100% specific for the detection of the SARS-CoV-2 virus. The performance of the electrochemical sensor was validated with nasopharyngeal samples, obtaining a sensibility and specificity of 100% compared to the gold standard RT-PCR method.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , COVID-19/diagnosis , Molecular Diagnostic Techniques/methods , Nucleic Acid Amplification Techniques/methods , Sensitivity and Specificity
3.
Materials (Basel) ; 16(14)2023 Jul 17.
Article in English | MEDLINE | ID: mdl-37512329

ABSTRACT

New energy storage materials are an object of study within the framework of the global energy transition. The development of renewable sources is being boosted thanks to stationary energy storage systems such as redox flow batteries (RFBs). This work reports the synthesis of the cobalt-containing Keggin-type polyoxometalates [CoW12O40]6- (CoW12) and [Co(H2O)SiW11O39]6- (CoSiW11), which have previously been shown to have applicability in RFBs. These procedures were reassessed to meet the strict requirements associated with the further implementation of RFBs, including fast and affordable synthetic procedures with high reaction yields. In contrast to the lengthy and complicated synthetic approaches published to date, the optimized synthesis reported in this work enables the isolation of the pure crystalline salt of the CoW12 anion with a 75% reduction of the time of the whole reaction procedure, eliminating tedious steps such as the recrystallization and including a 20% increased yield. The control of the stoichiometry, fine-tuning of reaction conditions, and the identification of intermediate species, as well as the acidic equilibria taking place during the process, were monitored via thermal, spectroscopic, and structural analyses. In the case of the CoSiW11 anion, its preparation was based on a simple and highly efficient procedure. Moreover, promising electrochemical properties were observed with the use of the one-pot synthetic approach, in which the stoichiometric amounts of the starting reagents are dissolved in the supporting electrolyte to be directly implemented as the electrolyte for a RFB.

4.
Heliyon ; 9(1): e12637, 2023 Jan.
Article in English | MEDLINE | ID: mdl-36691544

ABSTRACT

The aim of this work is the design and 3D printing of a new electrochemical sensor for the detection of Listeria monocytogenes based on loop mediated isothermal amplification (LAMP). The food related diseases involve a serious health issue all over the world. Listeria monocytogenes is one of the major problems of contaminated food, this pathogen causes a disease called listeriosis with a high rate of hospitalization and mortality. Having a fast, sensitive and specific detection method for food quality control is a must in the food industry to avoid the presence of this pathogen in the food chain (raw materials, facilities and products). A point-of-care biosensor based in LAMP and electrochemical detection is one of the best options to detect the bacteria on site and in a very short period of time. With the numerical analysis of different geometries and flow rates during sample injection in order to avoid bubbles, an optimized design of the microfluidic biosensor chamber was selected for 3D-printing and experimental analysis. For the electrochemical detection, a novel custom gold concentric-3-electrode consisting in a working electrode, reference electrode and a counter electrode was designed and placed in the bottom of the chamber. The LAMP reaction was optimized specifically for a primers set with a limit of detection of 1.25 pg of genomic DNA per reaction and 100% specific for detecting all 12 Listeria monocytogenes serotypes and no other Listeria species or food-related bacteria. The methylene blue redox-active molecule was tested as the electrochemical transducer and shown to be compatible with the LAMP reaction and very clearly distinguished negative from positive food samples when the reaction is measured at the end-point inside the biosensor.

5.
Talanta ; 217: 121061, 2020 Sep 01.
Article in English | MEDLINE | ID: mdl-32498831

ABSTRACT

A rapid highly sensitive genosensor has been developed for monitoring the presence of Legionella spp. in different water systems (domestic hot water, heating/cooling systems or cooling towers) in order to avoid its spreading from the source of contamination. The genosensor integrates a loop mediated isothermal amplification (LAMP) reaction with an electrochemical transduction signal, producing a very simple, rapid to perform and cost effective method, suitable for in situ analyses. This approach detects as low as 10 fg of Legionella nucleic acid, corresponding to only 2 number copies of the bacteria. The use of an electrochemical redox-active double stranded DNA (dsDNA) intercalating molecule, known as methylen blue (MB), allows the immediate electrochemical reading during the DNA polymerization. The sensor can obtain quantitative results in 20 min with a correlation between the electrochemical data and Legionella spp. copy number (at a logarithmic scale) of r = -0.97. In conclusion, a fast, easy to use, and accurate electrochemical genosensor, with high precision, sensitivity, and specificity has been developed for in situ detection of Legionella spp. enabling real time decision making and improving significantly the current detection methods for the prevention and screening of Legionella.


Subject(s)
Biosensing Techniques , DNA, Bacterial/analysis , DNA, Bacterial/genetics , Electrochemical Techniques , Legionella pneumophila/genetics , Nucleic Acid Amplification Techniques , Polymerase Chain Reaction
6.
Anal Chim Acta ; 905: 156-62, 2016 Jan 28.
Article in English | MEDLINE | ID: mdl-26755150

ABSTRACT

A highly sensitive surface plasmon resonance (SPR) immunosensor for the important ErbB2 breast cancer biomarker has been developed. Optimization of the assay has been carried out, including signal enhancement employing gold nanoparticles (GNPs). The effect of the signal amplification of the GNPs has been also studied. The assay has been tested with clinically relevant matrices. Results in 50% human serum yielded a LOD of 180 pg mL(-1) which is a concentration 83 times lower than the clinical cut-off. Raw lysates from model breast cancer cell lines (SK-BR-3, MCF-7 and MDA-MB-436) have been also assayed and higher quantities of the ErbB2 protein were clearly observed in the ErbB2 over-expressing case (SK-BR-3). The results confirmed that the simple and highly sensitive SPR immunosensor represents a feasible tool for ErbB2 detection.


Subject(s)
Biomarkers, Tumor/metabolism , Biosensing Techniques , Breast Neoplasms/diagnosis , Receptor, ErbB-2/metabolism , Surface Plasmon Resonance/methods , Biomarkers, Tumor/blood , Breast Neoplasms/pathology , Cell Line, Tumor , Female , Humans , Receptor, ErbB-2/blood
SELECTION OF CITATIONS
SEARCH DETAIL
...