Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters











Database
Language
Publication year range
1.
J Med Chem ; 2024 Sep 13.
Article in English | MEDLINE | ID: mdl-39271471

ABSTRACT

Emerging drug candidates more often fall in the beyond-rule-of-five chemical space. Among them, proteolysis targeting chimeras (PROTACs) have gained great attention in the past decade. Although physicochemical properties of small molecules accomplishing Lipinski's rule-of-five can now be easily predicted through models generated by large data collections, for PROTACs the knowledge is still limited and heterogeneous, hampering their prediction. Here, the kinetic solubility and the coefficient of distribution at pH 7.4 (LogD7.4) of 44 PROTACs, designed and synthesized to cover a wide chemical space, were measured. Their generally low solubility and high lipophilicity required an optimization of the experimental methods. Concerning the LogD7.4, several in silico prediction tools were tested, which were quite accurate for classical small molecules but provided dissimilar outcomes for PROTACs. Finally, in silico models for the prediction of PROTACs' kinetic solubility and LogD7.4 were proposed by combining in-house generated experimental data with 3D description of PROTACs' structures.

2.
Org Biomol Chem ; 22(17): 3477-3489, 2024 05 01.
Article in English | MEDLINE | ID: mdl-38602033

ABSTRACT

Selective degradation of disease-causing proteins using proteolysis targeting chimeras (PROTACs) has gained great attention, thanks to its several advantages over traditional therapeutic modalities. Despite the advances made so far, the structural chemical complexity of PROTACs poses challenges in their synthetic approaches. PROTACs are typically prepared through a convergent approach, first synthesizing two fragments separately (target protein and E3 ligase ligands) and then coupling them to produce a fully assembled PROTAC. The amidation reaction represents the most common coupling exploited in PROTACs synthesis. Unfortunately, the overall isolated yields of such synthetic procedures are usually low due to one or more purification steps to obtain the final PROTAC with acceptable purity. In this work, we focused our attention on the optimization of the final amidation step for the synthesis of an anti-SARS-CoV-2 PROTAC by investigating different amidation coupling reagents and a range of alternative solvents, including ionic liquids (ILs). Among the ILs screened, [OMIM][ClO4] emerged as a successful replacement for the commonly used DMF within the HATU-mediated amidation reaction, thus allowing the synthesis of the target PROTAC under mild and sustainable conditions in very high isolated yields. With the optimised conditions in hand, we explored the scalability of the synthetic approach and the substrate scope of the reaction by employing different E3 ligase ligand (VHL and CRBN)-based intermediates containing linkers of different lengths and compositions or by using different target protein ligands. Interestingly, in all cases, we obtained high isolated yields and complete conversion in short reaction times.


Subject(s)
Ionic Liquids , Proteolysis , Ionic Liquids/chemistry , Ionic Liquids/chemical synthesis , Ubiquitin-Protein Ligases/metabolism , SARS-CoV-2 , Amides/chemistry , Amides/chemical synthesis , Humans , Ligands , Molecular Structure , Antiviral Agents/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/pharmacology , Proteolysis Targeting Chimera
3.
Eur J Med Chem ; 268: 116202, 2024 Mar 15.
Article in English | MEDLINE | ID: mdl-38394929

ABSTRACT

To date, Proteolysis Targeting Chimera (PROTAC) technology has been successfully applied to mediate proteasomal-induced degradation of several pharmaceutical targets mainly related to oncology, immune disorders, and neurodegenerative diseases. On the other hand, its exploitation in the field of antiviral drug discovery is still in its infancy. Recently, we described two indomethacin (INM)-based PROTACs displaying broad-spectrum antiviral activity against coronaviruses. Here, we report the design, synthesis, and characterization of a novel series of INM-based PROTACs that recruit either Von-Hippel Lindau (VHL) or cereblon (CRBN) E3 ligases. The panel of INM-based PROTACs was also enlarged by varying the linker moiety. The antiviral activity resulted very susceptible to this modification, particularly for PROTACs hijacking VHL as E3 ligase, with one piperazine-based compound (PROTAC 6) showing potent anti-SARS-CoV-2 activity in infected human lung cells. Interestingly, degradation assays in both uninfected and virus-infected cells with the most promising PROTACs emerged so far (PROTACs 5 and 6) demonstrated that INM-PROTACs do not degrade human PGES-2 protein, as initially hypothesized, but induce the concentration-dependent degradation of SARS-CoV-2 main protease (Mpro) both in Mpro-transfected and in SARS-CoV-2-infected cells. Importantly, thanks to the target degradation, INM-PROTACs exhibited a considerable enhancement in antiviral activity with respect to indomethacin, with EC50 values in the low-micromolar/nanomolar range. Finally, kinetic solubility as well as metabolic and chemical stability were measured for PROTACs 5 and 6. Altogether, the identification of INM-based PROTACs as the first class of SARS-CoV-2 Mpro degraders demonstrating activity also in SARS-CoV-2-infected cells represents a significant advance in the development of effective, broad-spectrum anti-coronavirus strategies.


Subject(s)
COVID-19 , Coronavirus 3C Proteases , Proteolysis Targeting Chimera , Humans , Proteolysis , SARS-CoV-2/metabolism , Ubiquitin-Protein Ligases/metabolism , Antiviral Agents/pharmacology
4.
J Med Chem ; 66(18): 13148-13171, 2023 Sep 28.
Article in English | MEDLINE | ID: mdl-37699425

ABSTRACT

PROteolysis TArgeting Chimeras (PROTACs) are tripartite molecules consisting of a linker connecting a ligand for a protein of interest to an E3 ligase recruiter, whose rationale relies on proteasome-based protein degradation. PROTACs have expanded as a therapeutic strategy to open new avenues for unmet medical needs. Leveraging our expertise, we undertook a series of in vitro experiments aimed at elucidating PROTAC metabolism. In particular, we focused on PROTACs recruiting the von Hippel-Lindau (VHL) E3 ligase. After high-resolution mass spectrometry measurements, a characteristic metabolite with mass reduction of 200 units was detected and successively confirmed as a product deriving from the cleavage of the VHL ligand moiety. Subsequently, we identified hepatic and extrahepatic prolyl endopeptidases as the main putative metabolic enzymes involved. Finally, we designed and synthesized analogs of the VHL ligands that we further exploited for the synthesis of novel VHL-directed PROTACs with an improved metabolic stability in in vitro applications.

5.
RSC Adv ; 12(34): 21968-21977, 2022 Aug 04.
Article in English | MEDLINE | ID: mdl-36043064

ABSTRACT

Proteolysis targeting chimeras (PROTACs) represent an emerging class of compounds for innovative therapeutic application. Their bifunctional nature induces the formation of a ternary complex (target protein/PROTAC/E3 ligase) which allows target protein ubiquitination and subsequent proteasomal-dependent degradation. To date, despite great efforts being made to improve their biological efficacy PROTACs rational design still represents a challenging task, above all for the modulation of their physicochemical and pharmacokinetics properties. Considering the pivotal role played by the linker moiety, recently the insertion of a piperazine moiety into the PROTAC linker has been widely used, as this ring can in principle improve rigidity and increase solubility upon protonation. Nevertheless, the pK a of the piperazine ring is significantly affected by the chemical groups located nearby, and slight modifications in the linker could eliminate the desired effect. In the present study, the pK a values of a dataset of synthesized small molecule compounds including PROTACs and their precursors have been evaluated in order to highlight how a fine modulation of piperazine-containing linkers can impact the protonation state of these molecules or similar heterobifunctional ones. Finally, the possibility of predicting the trend through in silico approaches was also evaluated.

6.
Antiviral Res ; 204: 105350, 2022 08.
Article in English | MEDLINE | ID: mdl-35688349

ABSTRACT

Two years after its emergence, SARS-CoV-2 still represents a serious and global threat to human health. Antiviral drug development usually takes a long time and, to increase the chances of success, chemical variability of hit compounds represents a valuable source for the discovery of new antivirals. In this work, we applied a platform of variably oriented virtual screening campaigns to seek for novel chemical scaffolds for SARS-CoV-2 main protease (Mpro) inhibitors. The study on the resulting 30 best hits led to the identification of a series of structurally unrelated Mpro inhibitors. Some of them exhibited antiviral activity in the low micromolar range against SARS-CoV-2 and other human coronaviruses (HCoVs) in different cell lines. Time-of-addition experiments demonstrated an antiviral effect during the viral replication cycle at a time frame consistent with the inhibition of SARS-CoV-2 Mpro activity. As a proof-of-concept, to validate the pharmaceutical potential of the selected hits against SARS-CoV-2, we rationally optimized one of the hit compounds and obtained two potent SARS-CoV-2 inhibitors with increased activity against Mpro both in vitro and in a cellular context, as well as against SARS-CoV-2 replication in infected cells. This study significantly contributes to the expansion of the chemical variability of SARS-CoV-2 Mpro inhibitors and provides new scaffolds to be exploited for pan-coronavirus antiviral drug development.


Subject(s)
Antiviral Agents , Coronavirus 3C Proteases , Protease Inhibitors , SARS-CoV-2 , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases/antagonists & inhibitors , Molecular Docking Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/drug effects , SARS-CoV-2/enzymology
7.
J Med Chem ; 63(20): 11615-11638, 2020 10 22.
Article in English | MEDLINE | ID: mdl-33026811

ABSTRACT

Hetero-bifunctional PROteolysis TArgeting Chimeras (PROTACs) represent a new emerging class of small molecules designed to induce polyubiquitylation and proteasomal-dependent degradation of a target protein. Despite the increasing number of publications about the synthesis, biological evaluation, and mechanism of action of PROTACs, the characterization of the pharmacokinetic properties of this class of compounds is still minimal. Here, we report a study on the metabolism of a series of 40 PROTACs in cryopreserved human hepatocytes at multiple time points. Our results indicated that the metabolism of PROTACs could not be predicted from that of their constituent ligands. Their linkers' chemical nature and length resulted in playing a major role in the PROTACs' liability. A subset of compounds was also tested for metabolism by human cytochrome P450 3A4 (CYP3A4) and human aldehyde oxidase (hAOX) for more in-depth data interpretation, and both enzymes resulted in active PROTAC metabolism.


Subject(s)
Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Drug Discovery , Hepatocytes/metabolism , Proteolysis/drug effects , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/metabolism , Aldehyde Oxidase/metabolism , Antineoplastic Agents/chemistry , Cells, Cultured , Cytochrome P-450 CYP3A/metabolism , Drug Stability , Hepatocytes/drug effects , Hepatocytes/enzymology , Humans , Molecular Structure , Small Molecule Libraries/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL