Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Mater ; 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39026087

ABSTRACT

Iron-based 1111-type superconductors display high critical temperatures and relatively high critical current densities Jc. The typical approach to increasing Jc is to introduce defects to control dissipative vortex motion. However, when optimized, this approach is theoretically predicted to be limited to achieving a maximum Jc of only ∼30% of the depairing current density Jd, which depends on the coherence length and the penetration depth. Here we dramatically boost Jc in SmFeAsO1-xHx films using a thermodynamic approach aimed at increasing Jd and incorporating vortex pinning centres. Specifically, we reduce the penetration depth, coherence length and critical field anisotropy by increasing the carrier density through high electron doping using H substitution. Remarkably, the quadrupled Jd reaches 415 MA cm-2, a value comparable to cuprates. Finally, by introducing defects using proton irradiation, we obtain high Jc values in fields up to 25 T. We apply this method to other iron-based superconductors and achieve a similar enhancement of current densities.

2.
Nat Mater ; 22(5): 591-598, 2023 May.
Article in English | MEDLINE | ID: mdl-37012436

ABSTRACT

Large spin-orbit torques (SOTs) generated by topological materials and heavy metals interfaced with ferromagnets are promising for next-generation magnetic memory and logic devices. SOTs generated from y spin originating from spin Hall and Edelstein effects can realize field-free magnetization switching only when the magnetization and spin are collinear. Here we circumvent the above limitation by utilizing unconventional spins generated in a MnPd3 thin film grown on an oxidized silicon substrate. We observe conventional SOT due to y spin, and out-of-plane and in-plane anti-damping-like torques originated from z spin and x spin, respectively, in MnPd3/CoFeB heterostructures. Notably, we have demonstrated complete field-free switching of perpendicular cobalt via out-of-plane anti-damping-like SOT. Density functional theory calculations show that the observed unconventional torques are due to the low symmetry of the (114)-oriented MnPd3 films. Altogether our results provide a path toward realization of a practical spin channel in ultrafast magnetic memory and logic devices.

3.
Chem Mater ; 34(15): 6883-6893, 2022 Aug 09.
Article in English | MEDLINE | ID: mdl-35965892

ABSTRACT

Nitride perovskites have only been experimentally realized in very few cases despite the widespread existence and commercial importance of perovskite materials. From oxide perovskites used in ultrasonics to halide perovskites that have revolutionized the photovoltaics industry, the discovery of new perovskite materials has historically impacted a wide number of fields. Here, we add two new perovskites, CeWN3 and CeMoN3, to the list of experimentally realized perovskite nitrides using high-throughput computational screening and subsequent high-throughput thin film growth techniques. Candidate compositions are first down-selected using a tolerance factor and then thermochemical stability. A novel competing fluorite-family phase is identified for both material systems, which we hypothesize is a transient intermediate phase that crystallizes during the evolution from an amorphous material to a stable perovskite. Different processing routes to overcome the competing fluorite phase and obtain phase-pure nitride perovskites are demonstrated for the CeMoN3-x and CeWN3-x material systems, which provide a starting point for the development of future nitride perovskites. Additionally, we find that these new perovskite phases have interesting low-temperature magnetic behavior: CeMoN3-x orders antiferromagnetically below T N ≈ 8 K with indications of strong magnetic frustration, while CeWN3-x exhibits no long-range order down to T = 2 K but has strong antiferromagnetic correlations. This work demonstrates the importance and effectiveness of using high-throughput techniques, both computational and experimental: they are integral to optimize the process of realizing two entirely novel nitride perovskites.

4.
Sci Rep ; 10(1): 10239, 2020 Jun 24.
Article in English | MEDLINE | ID: mdl-32581222

ABSTRACT

We present an extensive study of vortex dynamics in a high-quality single crystal of HgBa2CuO4+δ, a highly anisotropic superconductor that is a model system for studying the effects of anisotropy. From magnetization M measurements over a wide range of temperatures T and fields H, we construct a detailed vortex phase diagram. We find that the temperature-dependent vortex penetration field Hp(T), second magnetization peak Hsmp(T), and irreversibility field Hirr(T) all decay exponentially at low temperatures and exhibit an abrupt change in behavior at high temperatures T/Tc >~ 0.5. By measuring the rates of thermally activated vortex motion (creep) S(T, H) = |dlnM(T, H)/dlnt|, we reveal glassy behavior involving collective creep of bundles of 2D pancake vortices as well as temperature- and time-tuned crossovers from elastic (collective) dynamics to plastic flow. Based on the creep results, we show that the second magnetization peak coincides with the elastic-to-plastic crossover at low T, yet the mechanism changes at higher temperatures.

5.
J Phys Condens Matter ; 25(44): 445701, 2013 Nov 06.
Article in English | MEDLINE | ID: mdl-24113354

ABSTRACT

We present measurements of the superconducting transition temperature, Tc, for arrays of mesoscopic Nb islands patterned on Au films, for large island spacings d. We show that Tc ∼ 1/d(2), and explain this dependence in terms of the quasiclassical prediction that the Thouless energy, rather than the superconducting gap, governs the inter-island coupling at large spacings. We also find that the temperature dependence of the critical current, Ic(T), in our arrays is similar to that of single SNS junctions. However, our results deviate from the quasiclassical theory in that Tc is sensitive to island height, because the islands are mesoscopic.

SELECTION OF CITATIONS
SEARCH DETAIL
...