Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Comp Immunol Microbiol Infect Dis ; 110: 102190, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38815398

ABSTRACT

Canine parvovirus type 2 (CPV-2) is a major cause of fatal gastroenteritis and myocarditis in puppies of domestic and wild carnivores. CPV-2 has accumulated changes over time lead to the emergence of three antigenic variants CPV-2a, CPV-2b, and CPV-2c. VP2 is the major capsid protein that determines virus antigenicity, and host range. Although the three CPV-2 variants were previously identified in Egypt, most reports covered a restricted geographic region and/or time period, and only analyzed partial fragments of VP2 gene. Therefore, this study was designed to test 100 rectal swabs collected from 7 Egyptian governorates between 2019 and 2021 for CPV-2 using PCR. A total of 65 positive samples were identified, mostly in pure dog breeds of young age. The three variants co-circulated in 2019, while CPV-2b was not detected in 2020 and 2021. The frequency of CPV-2b and CPV-2c was higher in 2019 and 2021, respectively. Analysis of CPV-2 full-length VP2 gene sequence from 19/65 positive samples has identified four common amino acid substitutions F267Y, S297A, A300G, Y324I, which are characteristic for the new CPV-2 variants currently circulating worldwide. Unique substitutions including A5G, G36R, V38E, Q370R, and G392V were recognized in certain samples, and appears to have distinct effect on receptor binding, nuclear translocation, and inter-species transmission. Phylogenetic analysis showed separation of CPV-2 strains into two clades. All strains of this study were classified in clade I with Asian strains. In conclusion, this study provides updated comprehensive molecular analysis of CPV-2 variants in Egypt.


Subject(s)
Capsid Proteins , Dog Diseases , Parvoviridae Infections , Parvovirus, Canine , Phylogeny , Animals , Egypt/epidemiology , Dogs , Parvovirus, Canine/genetics , Parvovirus, Canine/classification , Parvovirus, Canine/isolation & purification , Capsid Proteins/genetics , Parvoviridae Infections/veterinary , Parvoviridae Infections/virology , Parvoviridae Infections/epidemiology , Dog Diseases/virology , Dog Diseases/epidemiology , Amino Acid Substitution
2.
Inorg Chem ; 63(2): 1151-1165, 2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38174709

ABSTRACT

The Nb2PdxS5 (x ≈ 0.74) superconductor with a Tc of 6.5 K is reduced by the intercalation of lithium in ammonia solution or electrochemically to produce an intercalated phase with expanded lattice parameters. The structure expands by 2% in volume and maintains the C2/m symmetry and rigidity due to the PdS4 units linking the layers. Experimental and computational analysis of the chemically synthesized bulk sample shows that Li occupies triangular prismatic sites between the layers with an occupancy of 0.33(4). This level of intercalation suppresses the superconductivity, with the injection of electrons into the metallic system observed to also reduce the Pauli paramagnetism by ∼40% as the bands are filled to a Fermi level with a lower density of states than in the host material. Deintercalation using iodine partially restores the superconductivity, albeit at a lower Tc of ∼5.5 K and with a smaller volume fraction than in fresh Nb2PdxS5. Electrochemical intercalation reproduces the chemical intercalation product at low Li content (<0.4) and also enables greater reduction, but at higher Li contents (≥0.4) accessed by this route, phase separation occurs with the indication that Li occupies another site.

3.
Dalton Trans ; 50(33): 11376-11379, 2021 Sep 07.
Article in English | MEDLINE | ID: mdl-34397063

ABSTRACT

Intercalation of lithium and ammonia into the layered semiconductor Bi2Se3 proceeds via a hyperextended (by >60%) ammonia-rich intercalate, to eventually produce a layered compound with lithium amide intercalated between the bismuth selenide layers which offers scope for further chemical manipulation.

4.
J Am Chem Soc ; 142(46): 19588-19601, 2020 Nov 18.
Article in English | MEDLINE | ID: mdl-33108185

ABSTRACT

For magnesium ion batteries (MIBs) to be used commercially, new cathodes must be developed that show stable reversible Mg intercalation. VS4 is one such promising material, with vanadium and disulfide anions [S2]2- forming one-dimensional linear chains, with a large interchain spacing (5.83 Å) enabling reversible Mg insertion. However, little is known about the details of the redox processes and structural transformations that occur upon Mg intercalation and deintercalation. Here, employing a suite of local structure characterization methods including X-ray photoelectron spectroscopy (XPS), V and S X-ray absorption near-edge spectroscopy (XANES), and 51V Hahn echo and magic-angle turning with phase-adjusted sideband separation (MATPASS) NMR, we show that the reaction proceeds via internal electron transfer from V4+ to [S2]2-, resulting in the simultaneous and coupled oxidation of V4+ to V5+ and reduction of [S2]2- to S2-. We report the formation of a previously unknown intermediate in the Mg-V-S compositional space, Mg3V2S8, comprising [VS4]3- tetrahedral units, identified by using density functional theory coupled with an evolutionary structure-predicting algorithm. The structure is verified experimentally via X-ray pair distribution function analysis. The voltage associated with the competing conversion reaction to form MgS plus V metal directly is similar to that of intermediate formation, resulting in two competing reaction pathways. Partial reversibility is seen to re-form the V5+ and S2- containing intermediate on charging instead of VS4. This work showcases the possibility of developing a family of transition metal polychalcogenides functioning via coupled cationic-anionic redox processes as a potential way of achieving higher capacities for MIBs.

SELECTION OF CITATIONS
SEARCH DETAIL
...