Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Vet World ; 15(9): 2244-2252, 2022 Sep.
Article in English | MEDLINE | ID: mdl-36341068

ABSTRACT

Background and Aim: Salinomycin sodium, a licensed coccidiostat in rabbits, is used for fattening at a dose of 20-25 mg/kg. Salinomycin toxicity may arise from many risk factors (e.g., overdosage or use in non-target animal species). Silymarin extracted from milk thistle has antioxidant, anti-inflammatory, and antiviral properties. This study aimed to investigate the adverse impacts of oral administration of salinomycin for 28 consecutive days and how to reduce its risks and side effects by administering silymarin. Materials and Methods: Eighty-four male New Zealand White bucks (1.750-2.000 kg) were randomly divided into seven groups (12 each). Group one was the control. Groups two and three were administered salinomycin orally (doses of 20 and 40 mg/kg ration). Group four was administered salinomycin (20 mg/kg ration) and silymarin (6.5 mg/kg body weight [BW]). Group five received salinomycin (40 mg/kg ration) and silymarin (13 mg/kg BW). Groups six and seven were administered silymarin at doses of 6.5 and 13 mg/kg BW. Rabbits were euthanized and slaughtered on day 29 using the Halal method. Alanine aminotransferase (ALT), aspartate aminotransferase (AST), creatinine, urea, total proteins, albumin, total cholesterol, and high- and low-density lipoprotein (HDL and LDL) were analyzed in serum. Glutathione (GSH), superoxide dismutase (SOD), catalase, and malondialdehyde (MDA) were estimated in the liver. A histopathological investigation was performed on the liver and kidney. Results: The MDA activity, AST, ALT, total protein, albumin, total cholesterol, triglyceride, LDL, urea, and creatinine values were significantly elevated in groups two and three. The GSH, catalase, SOD, and HDL were significantly lower in these groups than in the control group. There were moderate pathologic changes in the liver and kidney of the third group. However, the results of the fourth and fifth groups improved more than those of the second and third groups. The results of the sixth and seventh groups were nearly the same as those of the control group. Conclusion: Salinomycin toxicity was caused by oxidative damage because of reactive oxygen species formation. Silymarin (6.5 or 13 mg/kg BW) tends to prevent and treat accidental toxicity. However, the high dose of silymarin (13 mg/kg BW) had more renal and hepatoprotective capacities.

2.
Environ Sci Pollut Res Int ; 27(9): 9192-9201, 2020 Mar.
Article in English | MEDLINE | ID: mdl-31916151

ABSTRACT

This study was conducted to elucidate the ameliorative potential of lycopene (LYC) against the metabolic toxicity induced by bisphenol A (BPA) in rats. Male rats (n = 28) were divided into 4 equal groups: control group, LYC group was given lycopene (10 mg/kg BW), BPA group was given 10 mg/kg BW of BPA, and the last group was administered BPA and LYC at 10 mg/kg via gavage for 90 consecutive days. Body weight (BW) gain, lipid profile, and total antioxidant capacity (TAC) were assessed. Oral glucose tolerance test (OGTT), homeostasis model assessment-estimated insulin resistance (HOMA-IR), thyroid hormones, interleukin-1 beta (IL-1ß), leptin, and resistin were assayed. Moreover, immunohistochemistry of TNF-α was performed in adipose tissue. BPA-treated rats showed significant reduction in BW gain and deteriorations in lipid profile, TAC, OGTT, and thyroid hormones as well as significant increases in HOMA-IR, IL-1ß, leptin, and resistin. While, improvement of metabolic parameters was observed when LYC was administrated with BPA. Intense TNF-α immunostaining was detected in the fat of BPA-treated rats but the intensity decreased when LYC was administrated with BPA. In conclusion, LYC ameliorated the adverse effects of BPA on metabolism through its antioxidant potential and its reduction of TNF-α expression in adipose tissue.


Subject(s)
Benzhydryl Compounds/metabolism , Lycopene/metabolism , Metabolic Diseases , Phenols/metabolism , Animals , Lycopene/chemistry , Male , Rats
3.
Environ Sci Pollut Res Int ; 26(1): 199-207, 2019 Jan.
Article in English | MEDLINE | ID: mdl-30387063

ABSTRACT

The effects of fipronil (FPN) on the liver of rats were studied. Rats (n = 6) were treated with 9.7 mg/kg (1/10 of FPN LD50), and other rats (n = 6) received 120 mg/kg of 10% Uncaria tomentosa extract, while a mixture of 9.7 mg/kg FPN and 120 mg/kg of 10% Uncaria tomentosa extract were administered orally to the rats (n = 6) daily for 6 weeks. Body, hepatic weights, liver enzymes, and lipid profile were determined. Hepatic activities of MDA, TNO, TAC, TNF-α, and IL-6 in liver homogenate were measured. Immunohistochemistry of NF-kB and liver histopathology were performed. Fipronil-treated rats had a significant (P = 0.02) lower weight gain. Moreover, relative liver weight was significantly (P = 0.003) increased in FPN-treated rats. Rats administrated with FPN exhibited a significantly (P = 0.02) higher liver enzymes and promoted levels of MDA, TNO, TNF-α, and IL-6 (P < 0.0001) than that in the other groups. Immunostaining of NF-κB was increased (P < 0.0001) in FPN-treated rats. Interestingly, Uncaria tomentosa alone or with FPN decreased the liver immunostaining of NF-κB. In conclusion, FPN produced liver injury through lipid peroxidation and stimulation of NF-κB. However, Uncaria tomentosa combated the oxidative stress and liver damage induced by FPN via inhibition of NF-κB.


Subject(s)
Antioxidants/pharmacology , Cat's Claw/chemistry , Chemical and Drug Induced Liver Injury/metabolism , Liver/drug effects , Oxidative Stress/drug effects , Plant Extracts/pharmacology , Pyrazoles/adverse effects , Animals , Antioxidants/metabolism , Antioxidants/therapeutic use , Cell Line , Chemical and Drug Induced Liver Injury/prevention & control , Environmental Pollutants/adverse effects , Insecticides/adverse effects , Interleukin-6/metabolism , Lipid Peroxidation/drug effects , Liver/metabolism , Liver/pathology , Male , Malondialdehyde/metabolism , NF-kappa B/metabolism , Phytotherapy , Plant Extracts/therapeutic use , Protective Agents/pharmacology , Protective Agents/therapeutic use , Rats, Wistar , Tumor Necrosis Factor-alpha/antagonists & inhibitors
4.
Toxicol Rep ; 5: 296-301, 2018.
Article in English | MEDLINE | ID: mdl-29854598

ABSTRACT

Phytoestrogens have an impact on both animals and humans due to use of legumes in animal diets as well as the increase of vegetarian diets in some human populations. Phytoestrogens thought to have varieties of adverse effects, among which immune system was involved. The present study aimed to investigate the effect of prenatal exposure to dietary soy isoflavones on some immunological parameters in male albino rat offspring. The pregnant rats were divided to three groups (12/group). Control group (free soy isoflavones), low soy isoflavones group (6.5%) and high soy isoflavones group (26%). The male offspring cell-mediated immune response was determined using phytohemagglutinin (PHA) injection and the intumesce index which was calculated on postnatal day 50 (PND 50). At PND 50, blood samples were collected for interleukin 12 (IL-12), interferon γ (IFN-γ) and tumor necrosis factor α (TNF-α) determination. Spleen, thymus, and PHA injected footpads were fixed for histopathology. Intumesce index, IL-12, IFN-γ, spleen and thymus relative weights were significantly (P < 0.05) decreased in offspring born to dams fed low and high dietary soy isoflavones. In contrary, TNF-α was significantly (P < 0.05) increased in offspring born to dams fed high dietary soy isoflavones. Spleen of rats born to dams fed high dose of dietary soy isoflavones showed coagulative necrosis in white pulp. In conclusion, male offspring born to dams fed different levels of soy isoflavones showed marked immunosuppression after PHA stimulation. This effect was mediated through the reduced IFN-γ that interacts with the IL-12 production pathway.

5.
Cytotechnology ; 70(2): 831-842, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29372465

ABSTRACT

Melilotus indicus, is a traditional medicine used as analgesic and emollient. Although Melilotus indicus extract (MIE) has recently been shown to suppress growth of several tumor cell lines, information regarding its antitumor mechanism is completely unknown. Here, we report the mechanism underlying the effects of MIE on human hepatocellular carcinoma cells, specifically HepG2, and SNU-182 cells. Methanolic MIE impaired the proliferation, and induced cell death in both HepG2 and SNU-182 cells but not in normal hepatic L-02 cells. Mechanistically, flow cytometric analysis revealed that MIE induces apoptosis in HepG2, and SNU-182 cells. However, MIE-induced apoptosis were not affected by a pan caspase inhibitor z-VAD-fmk as well as MIE did not stimulate caspase activation. Furthermore we found that MIE-induced apoptosis could be attributed to a mechanism involving mitochondria-mediated pathways evidenced by decrease in the mitochondrial membrane potential (ΔΨm), increase in the Bax/Bcl-2 ratio, and translocation of apoptosis inducing factor (AIF) from the mitochondria to the nucleus. Suppression in AIF expression by siRNA reduced MIE-induced apoptosis which suggested the dependency of MIE on AIF to induce apoptosis in hepatocellular carcinoma cells. To the best of our knowledge this is the first report elucidating the anticancer mechanism of MIE. Our findings suggested that MIE might be a good extract for developing anticancer drugs for human hepatocellular carcinoma treatment.

SELECTION OF CITATIONS
SEARCH DETAIL
...