Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
BMC Chem ; 18(1): 11, 2024 Jan 12.
Article in English | MEDLINE | ID: mdl-38216997

ABSTRACT

Zinc chromium oxide (Cr/ZnO, 5wt.%) was prepared by a facile chemical co-precipitation route. The structure, composition, and chemical bonding were analyzed using X-ray diffraction (XRD), Energy dispersive X-ray spectroscopy (EDX), and Fourier-transform infrared spectroscopy (FTIR) indicating that chromium ions were integrated the host framework to form Cr/ZnO nanocomposite. Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM) micrographs showed comb-shaped nanoparticles with an average size 20 nm and large surface area. The energy gap of the thin films was estimated from T% and R% measurements which exhibit a strong optical absorption edge close to the visible spectrum. The insecticidal activity of the synthesized nanocombs against C. pipiens larvae was evaluated with LC50 (30.15 ppm) and LC90 (100.22 ppm). Besides, the nanocomposite showed high antibacterial performance against gram-positive bacteria (Bacillus subtilis) and gram-negative bacteria (Proteus vulgaris) with inhibition zones 21.9 and 19 mm, respectively.

2.
Pharmaceuticals (Basel) ; 17(1)2024 Jan 15.
Article in English | MEDLINE | ID: mdl-38256946

ABSTRACT

Toxoplasma gondii causes a global parasitic disease. Therapeutic options for eradicating toxoplasmosis are limited. In this study, ZnO and Mg-doped ZnO NPs were prepared, and their structural and morphological chrematistics were investigated. The XRD pattern revealed that Mg-doped ZnO NPs have weak crystallinity and a small crystallite size. FTIR and XPS analyses confirmed the integration of Mg ions into the ZnO framework, producing the high-purity Mg-doped ZnO nanocomposite. TEM micrographs determined the particle size of un-doped ZnO in the range of 29 nm, reduced to 23 nm with Mg2+ replacements. ZnO and Mg-doped ZnO NPs significantly decreased the number of brain cysts (p < 0.05) by 29.30% and 35.08%, respectively, compared to the infected untreated group. The administration of ZnO and Mg-doped ZnO NPs revealed a marked histopathological improvement in the brain, liver, and spleen. Furthermore, ZnO and Mg-doped ZnO NPs reduced P53 expression in the cerebral tissue while inducing CD31 expression, which indicated a protective effect against the infection-induced apoptosis and the restoration of balance between free radicals and antioxidant defense activity. In conclusion, the study proved these nanoparticles have antiparasitic, antiapoptotic, and angiogenetic effects. Being nontoxic compounds, these nanoparticles could be promising adjuvants in treating chronic toxoplasmosis.

3.
ACS Omega ; 8(33): 30081-30094, 2023 Aug 22.
Article in English | MEDLINE | ID: mdl-37636946

ABSTRACT

A highly ultrasensitive sensor that relied on Cr/ZnO-NPs was developed to detect etilefrine hydrochloride (ETF) in different matrices via a particular green voltammetric technique. The X-ray diffraction pattern showed the nanomaterials of the polycrystalline hexagonal structure. The energy-dispersive X-ray spectrum approved the presence of Cr3+ inside the host zinc oxide framework. The morphological and topological characteristics were visualized using transmission electron microscopy and atomic force microscopy micrographs describing the nanoparticles in spherical-like shape with large-surface area. The energy gap (Eg) was evaluated from transmittance (T %) and reflectance (R %) spectra within the visible region. The optimization study indicated that the Cr/ZnO-NP/CPE sensor has high sensitivity, thanks to the distinctive physical and chemical properties of the fabricated electrode. A new approach showed a great selectivity for determining ETF in different matrices in the presence of other interferents like levodopa. Under optimal circumstances, the square-wave voltammetry revealed a linear response to ETF from 0.01 to 10 µmol L-1 (r = 0.9996) with quantification and detection limits of 9.11 and 2.97 nmol L-1, respectively. Finally, the proposed approach was effectively applied to estimate ETF in pharmaceutical dosage forms and biological fluids using simple, accurate, and selective electrochemical electrode. The greenness profile assessment of the developed method was performed using the Eco-Scale and green analytical procedure index. These tools indicated that the proposed method is an eco-friendly technique for the determination of ETF in different matrices.

4.
ACS Omega ; 8(28): 24883-24892, 2023 Jul 18.
Article in English | MEDLINE | ID: mdl-37483212

ABSTRACT

In the present study, tris-(8-hydroxyquinoline) aluminum (Alq3) and tris-(8-hydroxyquinoline) aluminum/yttrium oxide Alq3/Y2O3 were synthesized by a facile chemical route. The crystal structure, surface morphological nature, and particle size were identified by X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM) micrographs. Ag/Alq3/p-Si/Al and Ag/Alq3:Y2O3/p-Si/Al diodes were fabricated by the thermal evaporation technique and the electrical characteristics were evaluated from the I-V plots in dark and under illumination intensity. Thermionic emission theory, Cheung-Cheung, and Nord model have been applied to define the main electronic parameters like series resistance (Rs), barrier height (ϕb), and ideality factor (n). The hybrid Ag/Alq3:Y2O3/p-Si/Al diode revealed a nonideal behavior with high shunt resistance Rsh and good photocurrent sensitivity. The C/G-V analysis indicated that both C and G are strongly affected by the presence of trapped charge carriers at the interface states. The obtained results indicated that Rs was decreased whereas the carrier concentration (Na) was increased by loading Y2O3 nanosheets.

5.
BMC Biotechnol ; 23(1): 23, 2023 07 20.
Article in English | MEDLINE | ID: mdl-37474922

ABSTRACT

BACKGROUND: Infectious diseases prompted by micro-organisms such as fungi, parasites, or microbes, have influenced many countries' public health causing death. Scientists declared that metal oxide composites have various advantages in the medical field such as the antimicrobial feature has freshly been revealed as well as its role in suppressing mosquito population. METHODS: In this work silver doped zinc oxide nanorods (Ag/ZnO NRs, 10 wt.%) were prepared by simple chemical route, and their microstructural characteristics were investigated by XRD, EDX, SEM, and TEM techniques. The antimicrobial, larvicidal, and ovicidal of the synthesized nanocomposites were examined. RESULTS: The synthesized nanocomposite exhibited binary phase of crystallite size 112 nm was calculated from Williamson-Hall method. EDX spectrum revealed the purity of the composite consists of Zn, O, and Ag elements. The SEM and TEM micrographs showed the particles in nanorods with high density on the surface. The energy gap [Formula: see text] was evaluated from the UV-Vis absorbance in the range from 2.90 [Formula: see text] 3.08 eV inside the visible spectrum. The antimicrobial activity of the nanorods was examined against Gram-positive bacteria (Staphylococcus aureus and Bacillus subtilis) with inhibition zones 10.5 and 14.5 mm, respectively. Whereas gram-negative bacteria (Escherichia coli, Salmonella Typhimurium, and Pseudomonas aeruginosa) were 14 and 17 mm, respectively. Further, Candida albicans was investigated with inhibition zone 7.5 mm. Besides, the insecticidal impact of the nanocomposite against Culex pipiens larvae was performed at 30 mg/l causing 100% larval mortality with LC50 (11.78 mg/l). The micrograph images showed deformations in the larval body as well as egg resulting in zero egg hatchability. CONCLUSION: The findings approved that synthesized nanorods have a significant impact on controlling pathogens that impart different diseases to humans and the environment.


Subject(s)
Anti-Infective Agents , Metal Nanoparticles , Nanotubes , Zinc Oxide , Animals , Humans , Anti-Bacterial Agents/pharmacology , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Silver/pharmacology , Silver/chemistry , Anti-Infective Agents/pharmacology , Nanotubes/chemistry , Ions , Metal Nanoparticles/chemistry
6.
Micromachines (Basel) ; 14(3)2023 Feb 27.
Article in English | MEDLINE | ID: mdl-36984973

ABSTRACT

The spread of many infectious diseases by vectors is a globally severe issue. Climate change and the increase of vector resistance are the primary sources of rising mosquito populations. Therefore, advanced approaches are needed to prevent the dispersal of life-threatening diseases. Herein, Mn2O3 NPs and MnCoO nanocomposites were presented as mosquitocidal agents. The synthesized samples were prepared by a co-precipitation route and characterized using different techniques indicating the change of host Mn2O3 structure to 2D MnCoO nanoflakes with Co3+ integration. The thermal decomposition of the nanoparticles was examined by TGA analysis, showing high stability. The energy gap (Eg) of Mn2O3 was estimated within the visible spectrum of the value 2.95 eV, which reduced to 2.80 eV with doping support. The impact of Mn2O3 and MnCoO on immature stages was investigated by semithin photomicrographs exhibiting significant changes in the midgut, fat tissue and muscles of the third larval instar. Moreover, the external deformations in pupae were examined using scanning electron microscopy (SEM).

7.
BMC Chem ; 17(1): 7, 2023 Feb 20.
Article in English | MEDLINE | ID: mdl-36803540

ABSTRACT

The present work aims to investigate the ultrastructural changes in the fat body of fifth instar nymphs Schistocerca gregaria (Orthoptera: Acrididae) treated with zinc chromium oxide (ZnCrO). The nanoparticles (NPs) were prepared by co-precipitation route and characterized using X-ray diffraction (XRD), energy dispersive X-ray spectroscopy (EDX), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The ZnCrO NPs exhibited polycrystalline hexagonal structure, composed of spherical-hexagonal shapes with an average size ~ 25 nm. Besides, the UV-Vis spectrophotometer (Jasco-V-570) was utilized for optical measurements. The energy gap [Formula: see text] was estimated from the transmittance (T%) and reflectance (R%) spectra through the range of 3.307-3.840 eV. In biological sections, S. gregaria 5th instar nymphs, TEM images demonstrated that the fat body was strongly impacted with the concentration 2 mg NPs result in great agglomeration of chromatin in the nucleus as well as haemoglobin cells (HGCs) pierced with malformed trachea (Tr) at 5th and 7th days post treatment. The obtained results indicated a positive action of the prepared nanomaterial on Schistocerca gregaria fat body organelles.

8.
J Biomol Struct Dyn ; 41(20): 11193-11203, 2023 12.
Article in English | MEDLINE | ID: mdl-36571482

ABSTRACT

The structural, composition, and molecular interaction of silver integrated zinc oxide (20 wt.% Ag/ZnO) were investigated by X-ray diffraction (XRD), energy dispersive X-ray analysis (EDX), and Fourier transforms infrared (FTIR) spectrum. The XRD analysis showed the polycrystalline of small crystallite size, whereas the EDX spectrum confirmed the purity of the nanocomposite. The FTIR spectrum indicated the presence of Ag-Zn-O stretching vibration at 1034 cm-1. SEM and TEM images identified the surface morphology and particle size, indicating that Ag/ZnO of nanorods linked with spherical-like shapes. The nanorods of an average length of ∼110 nm and an average diameter of ∼10 nm. The optical characteristics showed a direct transition of electrons through an energy gap in the 3.30 eV-3.60 eV. The tested nanocomposite exhibited potent cytotoxicity against MCF-7 cells with an IC50 value of 0.26 µg/ml with cell growth inhibition by 97.3% at the highest concentration compared to Doxorubicin (IC50=6.72 µg/ml). It significantly stimulated total apoptotic breast cancer cell death by 51-fold (32.16% compared to 0.63 for the control), arresting the cell progression at the G1 phase. For further validation of apoptotic activity, the tested Ag/ZnO-NP upregulated the proapoptotic genes and down-regulated the anti-apoptotic gene. Moreover, a molecular docking study highlighted the binding disposition of the nanocomposite as Bcl-2 inhibitors. Additionally, Ag/ZnO-NP exhibited potent antimicrobial activity. Hence, the synthesized nanocomposite can serve as an antimicrobial and cytotoxic agent through apoptosis-induction and could be developed as a biologically active nanocomposite.Communicated by Ramaswamy H. Sarma.


Subject(s)
Anti-Infective Agents , Nanotubes , Zinc Oxide , Humans , Zinc Oxide/pharmacology , Zinc Oxide/chemistry , Silver/pharmacology , Silver/chemistry , MCF-7 Cells , Molecular Docking Simulation , Anti-Infective Agents/pharmacology , Nanotubes/chemistry , Apoptosis , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
9.
ACS Omega ; 7(47): 43139-43146, 2022 Nov 29.
Article in English | MEDLINE | ID: mdl-36467928

ABSTRACT

Nitroanilines are environmentally toxic pollutants which are released into aquatic systems due to uncontrolled industrialization. Therefore, it is crucial to convert these hazardous nitroanilines into a harmless or beneficial counterpart. In this context, we present the chemical reduction of 4-nitroaniline (4-NA) by NaBH4 utilizing Prussian blue analogue (PBA) as nanocatalyst. PBAs can serve as inexpensive, eco-friendly, and easily fabricated nanocatalysts. PBA cobalt tetracyanonickelate hexacyanochromate (CoTCNi/HCCr) was stoichiometrically prepared by a facile chemical coprecipitation. Chemical, phase, composition, and molecular interactions were investigated by XRD, EDX, XPS, and Raman spectroscopy. Additionally, SEM and TEM micrographs were utilized to visualize the microstructure of the nanomaterial. The findings revealed the synthesized PBA of the cubic phase and their particles in nanosheets. The band gap was estimated from the optical absorption within the UV-vis region to be 3.70 and 4.05 eV. The catalytic performance of PBA for the reduction of 4-NA was monitored by UV-vis spectroscopy. The total reduction time of 4-NA by PBA was achieved within 270 s, and the computed rate constant (k) was 0.0103 s-1. The synthesized PBA nanoparticles have the potential to be used as efficient nanocatalysts for the reduction of different hazardous nitroaromatics.

10.
RSC Adv ; 12(45): 29048-29062, 2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36320778

ABSTRACT

Researchers worldwide have been looking forward to using novel ways to purify fresh water containing pollutants and disease vectors. In the current work, nanoparticles were introduced as a promising technique for cleaning water and saving human health and living organisms. The nanocomposites, MnCoO and MnCoO/CNTs, were fabricated by a cost-effective co-precipitation method. Phase and molecular structures were investigated by XRD and Raman spectroscopy. The samples exhibited polycrystalline nature of binary phase and weak crystallinity. The elemental composition was recorded by EDX spectra, revealing the purity of the nanoparticles. The surface morphology and particle distribution were described using SEM and TEM micrographs, indicating that MnCoO/CNTs are nanoflakes with a large surface area. The optical parameters include α, E g, n, k, which were identified from T% and R% measurements, suggesting that MnCoO has a direct band gap that reduced with the CNT support. The photocatalytic activity of MnCoO/CNTs was examined for the degradation of methyl orange dye with an efficiency of ∼90.97% over 0.6 g L-1 within 50 min under UV irradiation. In the larvicidal activity, the micrograph images revealed the impact of the nanoflake particles on the 4th instar larvae, where the enzymatic activity of esterases acetylcholinesterase, α- and ß-carboxylesterase, and transaminases drastically decreased with the MnCoO/CNT ratio.

11.
Food Chem ; 385: 132668, 2022 Aug 15.
Article in English | MEDLINE | ID: mdl-35290954

ABSTRACT

In this work, carbon paste electrode (CPE) and modified CPE with copper oxide or copper yttrium oxide were prepared for determining amprolium hydrochloride (AMP) by differential pulse voltammetry. AMP has an antiprotozoal activity for treating coccidiosis in poultry; their retaining- in sheep meat and livers- induces adversative effects for the customer. XRD pattern was employed to define the fabricated nanostructured materials; the elemental composition of the nanocomposite was examined using EDX spectra. Over a pH ranging from 2 to 8, the oxidation process of AMP was studied using phosphate buffer. The scan rates were studied over a wide range (20 to 140 mV s-1) using cyclic voltammetry. The developed sensor shows a wide linear range (1.0 × 10-8-1.0 × 10-3 M) with a detection limit of 2.32 × 10-9 M. This method can quantify AMP in pharmaceutical form, sheep meat, and liver samples.


Subject(s)
Copper , Nanocomposites , Adenosine Monophosphate , Amprolium , Animals , Carbon/chemistry , Copper/chemistry , Electrochemical Techniques/methods , Electrodes , Limit of Detection , Liver , Meat , Sheep
12.
Food Chem ; 382: 131702, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35149471

ABSTRACT

In this paper, chemically modified carbon paste Mn2O3/MCNTs-NPs electrode for estimation of dinitolmide (DOM) utilizing square wave voltammetry method (SWV) was developed. The study investigated the electrochemical behavior of DOM, and the morphology of the modified electrode was evaluated by Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). The voltammetric behavior of DOM at modified electrode was recorded at a scan rate of 100 mVs-1 against Ag/AgCl reference electrode in phosphate buffer pH 4.0 within linearity range 2-12 µM, LOQ, and LOD of 1.8 and 0.594 µM, respectively, with average % recovery of (100.89 ± 0.795). GAPI and Analytical Eco-Scale tools were applied for greenness assessment. Specificity and interference study was valid for the proposed method; allowing DOM to be determined in its acidic degradation and its major interference drug. The proposed method was successfully employed to quantify DOM in bulk powder, egg, and frozen cuts-up chicken muscle samples.


Subject(s)
Carbon , Dinitolmide , Electrochemical Techniques , Electrodes , Poultry Products
13.
Talanta ; 242: 123321, 2022 May 15.
Article in English | MEDLINE | ID: mdl-35183980

ABSTRACT

A new chemically disposable screen-printed modified electrode with yttrium doped manganese oxide (Mn2O3/Y2O3) nanocomposite at screen printed electrode was mainly constructed to quantify xylometazoline hydrochloride (XMZ). The crystallographic parameters were estimated from the XRD spectrum, suggesting that Mn2O3 of cubic phase with average grain size ∼ 77 nm. The SEM images revealed that Y3+ dopants had improved the surface topology. The findings indicate that morphological features play a vital role in improving the electronic properties of the fabricated electrode. Augmentation of Six Sigma (SS) with molecular dynamics simulation (MD) as a theoretical study was widely adopted to improve the current process as a quality management methodology by measuring the process capability to determine if the process meets the desired specification limits. Process capability is determined through measuring the variability in the process output and comparing these variations with the desired specifications. Also, it assures a robust method specification at a high level of targeted performance and statistical confidence. A greenness assessment procedure utilizing the eco-scale algorism was conducted to prove the greenness of the proposed methodology. Additionally, the proposed sensor presented a high sensitivity over the concentration range (1x10-6-1x10-2 mol L-1) of a detection limit 3.93 × 10-7 mol L-1 with the Nernstian cationic slope of 58.18 ± 0.76 mV decade-1 at 25 ± 1 °C.


Subject(s)
Benzalkonium Compounds , Total Quality Management , Electrodes , Imidazoles , Molecular Dynamics Simulation , Potentiometry/methods
14.
RSC Adv ; 10(42): 24985-24993, 2020 Jun 29.
Article in English | MEDLINE | ID: mdl-35517446

ABSTRACT

A new chemically optimized screen-printed electrode modified with a cobalt-doped α-Mn2O3 nanostructure on carbon nanotube paste (α-Mn2O3:Co@CNTs) has been constructed for the recognition of cyclobenzaprine hydrochloride. The prepared paste is based on the incorporation of oxide ion conductors, such as the α-Mn2O3 nanostructure with cobalt and ion pairs (tetraphenyl borate coupled with the drug), as electroactive species in the screen-printed electrode to increase the sensor surface area and decrease electrical resistance. The central composite design is a useful methodology for the estimation and modeling of the exact optimum parameters specifically designed for this process. This is a good way to graphically clarify the relationship between various experimental variables and the slope response. The proposed sensor, α-Mn2O3:Co@CNTs, possesses very good sensitivity and the ability to recognize the drug over the concentration range of 1 × 10-6 to 1 × 10-2 mol L-1 at 25 ± °C with a detection limit of 2.84 × 10-7 mol L-1. It exhibits a reproducible potential and stable linear response for six months at a Nernstian slope of 58.96 ± 0.76 mV per decade. The proposed electrode approach has been successfully applied in the direct determination of the drug in its pure and dosage forms.

SELECTION OF CITATIONS
SEARCH DETAIL
...