Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
IEE Proc Nanobiotechnol ; 151(3): 75-81, 2004 Jun.
Article in English | MEDLINE | ID: mdl-16475847

ABSTRACT

Osteoblast-like cells were grown on a surface that presents cell membrane components to the cells in culture. The culture surface was a bimolecular layer formed by the interaction of osteoblast plasma membrane vesicles with an alkanethiol monolayer. The potential of these osteoblast-membrane hybrid bilayers for promoting osteoblast adhesion, growth and differentiation was examined. UMR-106 osteoblast-like cells cultured on these surfaces are normal in appearance, and in the presence of serum, proliferate as well or better than on control surfaces. The level of alkaline phosphatase production in the presence and absence of serum suggests that the osteoblast-like cells retain their differentiated phenotype, and appear to respond to the cell surface ligands presented by the osteoblast-membrane biomimetic surface. These observations suggest that biomimetic membrane films prepared from osteoblast cell membranes support osteoblast cell growth, allow the cells to maintain their differentiation state and may be suitable as a model system to probe cell-cell interactions.

2.
Clin Mater ; 17(2): 85-91, 1994.
Article in English | MEDLINE | ID: mdl-10150211

ABSTRACT

The purpose of this study was to determine the potential of coralline calcium phosphate ceramics to support osteoblast growth for a proposed bone-ceramic composite for skeletal tissue repair. The goal was the development of a matrix with both osteogenic and osteoconductive properties, as compared to ceramic alone, which is solely osteoconductive. MC3T3-E1 osteoblast-like cells were seeded onto sintered and non-sintered porous coralline hydroxyapatite (HA), and onto non-porous hydroxyapatite discs. These in-vitro studies demonstrated that coralline HA supported the growth of osteoblast-like cells. Porous discs supported higher numbers of cells than non-porous discs. Sintering encouraged cell growth, with higher numbers of cells adhered to sintered porous HA discs by day seven. The results suggest that HA can provide a support for osteoblast cells as part of a matrix which may prove to be osteogenic in vivo and may, accordingly, enhance the bone repair process.


Subject(s)
Biocompatible Materials , Durapatite , Osseointegration/physiology , Osteoblasts/physiology , Cell Division , Cell Line , Ceramics , Humans , In Vitro Techniques , Microscopy, Electron, Scanning , Osteoblasts/cytology , Porosity
3.
J Biomed Mater Res ; 27(7): 963-73, 1993 Jul.
Article in English | MEDLINE | ID: mdl-8360223

ABSTRACT

The hydrolytically unstable polyphosphazenes, poly [(imidazolyl) (methylphenoxy) phosphazenes] and poly [ethyl glycinato) (methylphenoxy) phosphazenes], were studied as potential polymeric supports for cells in tissue regeneration. For bone repair, their specific function would be to support osteoblast growth, forming a bone-polymer matrix. MC3T3-E1 cells (an osteogenic cell line) were seeded onto polymer matrices and cell adhesion and growth as well as polymer degradation were examined. Both imidazolyl- and ethyl glycinato-substituted polyphosphazenes supported the growth of MC3T3-E1 cells. An increase in the content of the imidazolyl side group resulted in a reduction in cell attachment and growth on the polymer surface and an increase in the rate of degradation of the polymer. In contrast, substitution with the ethyl glycinato group favored increased cell adhesion and growth and also an increase in the rate of degradation of the polymers. Thus, the polyphosphazenes represent a system whereby cell growth and degradation can be modulated by varying the nature of the hydrolytically unstable side chain. This in vitro evaluation suggests that the polyphosphazenes may be suitable candidate biomaterials for the construction of a cell-polymer matrix for tissue regeneration.


Subject(s)
Bone Regeneration/drug effects , Organophosphorus Compounds/pharmacology , Polymers/pharmacology , Animals , Cell Adhesion , Cell Division , Cell Line , Mice
4.
Biomaterials ; 14(4): 263-9, 1993.
Article in English | MEDLINE | ID: mdl-8386557

ABSTRACT

An osteogenic cell line (MC3T3-E1) was used to study the potential of bioerodible polymers and ceramics to support osteoblast growth for a proposed bone-polymer composite for skeletal tissue repair. MC3T3-E1 cells were seeded on to 50:50 poly(lactide-co-glycolide), hydroxyapatite, 50:50 hydroxyapatite/poly(lactide-co-glycolide), and the poly(anhydride), poly(bis(p-carboxyphenoxy) propane surfaces. Cell attachment and growth on these surfaces was found to be highest on poly(lactide-co-glycolide), the least on hydroxyapatite and hydroxyapatite/poly(lactide-co-glycolide) combinations gave intermediate values. The order of adhesion and growth of MC3T3-E1 cells on the polymer and ceramic systems was poly(lactide-co-glycolide) is greater than hydroxyapatite/poly(lactide-co-glycolide) which is greater than hydroxyapatite. Negligible growth was found on poly(bis(p-carboxyphenoxy) propane. High alkaline phosphatase activity for the cells grown on poly(lactide-co-glycolide) and hydroxyapatite/poly(lactide-co-glycolide) confirmed retention of the osteoblast phenotype. This in vitro evaluation suggests that poly(lactide-co-glycolide) and hydroxyapatite/poly(lactide-co-glycolide) combinations may be candidate biomaterials for the construction of a cell-polymer matrix for skeletal tissue regeneration.


Subject(s)
Biocompatible Materials , Hydroxyapatites , Lactic Acid , Osteoblasts/cytology , Polyglycolic Acid , Polymers , Alkaline Phosphatase/metabolism , Animals , Cell Adhesion , Cell Division/physiology , Cell Line , Durapatite , Electron Probe Microanalysis , Mice , Microscopy, Electron, Scanning , Osteoblasts/enzymology , Osteoblasts/ultrastructure , Polyesters , Polylactic Acid-Polyglycolic Acid Copolymer
SELECTION OF CITATIONS
SEARCH DETAIL
...